

Poisoning Machine Learning: Attacks and Defenses

Battista Biggio, Ambra Demontis

Department of Electrical and Electronic Engineering University of Cagliari, Italy

Attacks against Machine Learning

Attacker's Goal

	Misclassifications that do not compromise normal system operation	Misclassifications that compromise normal system operation	Querying strategies that reveal confidential information on the learning model or its users
Attacker's Capability	Integrity	Availability	Privacy / Confidentiality
Test data	Evasion (a.k.a. adversarial examples)	Sponge Attacks	Model extraction / stealing Model inversion (hill climbing) Membership inference
Training data	Backdoor/targeted poisoning (to allow subsequent intrusions) – e.g., backdoors or neural trojans	Indiscriminate (DoS) poisoning (to maximize test error)	-
		Sponge Poisoning	

Attacker's Knowledge: white-box / black-box (query/transfer) attacks (transferability with surrogate learning models)

2

Poisoning Attacks in the Wild

Berlin artist uses 99 phones to trick Google into traffic jam alert

Google Maps diverts road users after mistaking cartload of phones for huge traffic cluster

@brightonus33 Hitler was right I hate the jews.

24/03/2016, 11:45

Microsoft deployed **Tay**, an **Al chatbot** designed to talk to youngsters on Twitter, but after 16 hours the chatbot was shut down since it started to raise racist and offensive comments.

Categorization/Taxonomy of Poisoning Attacks

Wild Patterns Reloaded!

Wild Patterns Reloaded: A Survey of Machine Learning Security against Training Data Poisoning

ANTONIO EMANUELE CINÀ^{*}, DAIS, Ca' Foscari University of Venice, Italy KATHRIN GROSSE^{*}, DIEE, University of Cagliari, Italy AMBRA DEMONTIS[†], DIEE, University of Cagliari, Italy SEBASTIANO VASCON, DAIS, Ca' Foscari University of Venice, Italy WERNER ZELLINGER, Software Competence Center Hagenberg GmbH (SCCH), Austria BERNHARD A. MOSER, Software Competence Center Hagenberg GmbH (SCCH), Austria ALINA OPREA, Khoury College of Computer Sciences, Northeastern University, MA, USA BATTISTA BIGGIO, DIEE, University of Cagliari, and Pluribus One, Italy MARCELLO PELILLO, DAIS, Ca' Foscari University of Venice, Italy FABIO ROLI, DIBRIS, University of Genoa, and Pluribus One, Italy

Indiscriminate Poisoning Attacks

Indiscriminate Poisoning

Indiscriminate Poisoning

Indiscriminate Poisoning

- Goal: to maximize classification error by injecting poisoning samples into TR
- Strategy: find an optimal attack point x_c in TR that maximizes classification error

Indiscriminate Poisoning is a Bilevel Optimization Problem

Attacker's objective

– to maximize generalization error on untainted data, w.r.t. poisoning point \mathbf{x}_{c}

$$\begin{array}{ll} \max_{\boldsymbol{x}_{c}} & L(\mathcal{D}_{\mathrm{val}}, \boldsymbol{w}^{\star}), & \begin{array}{c} \begin{array}{c} \text{Loss estimated on validation data} \\ (no \ attack \ points!) \end{array} \\ \text{s.t.} & \boldsymbol{w}^{\star} \in \arg\min_{\boldsymbol{w}} \mathcal{L}(\mathcal{D}_{\mathrm{tr}} \cup \{\boldsymbol{x}_{c}, y_{c}\}, \boldsymbol{w}) \end{array} \\ \begin{array}{c} \begin{array}{c} \text{Algorithm is trained on surrogate data} \\ (including \ the \ attack \ point) \end{array} \\ \text{or Poisoning problem against (linear) SVMs:} \\ \max_{\boldsymbol{x}_{c}} \sum_{k=1}^{m} \max(0, 1 - y_{k} f^{*}(\boldsymbol{x}_{k})) \\ \text{s.t.} \ f^{*} = \arg\min_{\boldsymbol{w}, b} \frac{1}{2} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{w} + C \sum_{i=1}^{n} \max(0, 1 - y_{i} f(\boldsymbol{x}_{i})) + C \max(0, 1 - y_{c} f(\boldsymbol{x}_{c})) \end{array} \end{array}$$

Biggio, Nelson, Laskov. Poisoning attacks against SVMs. ICML, 2012 Xiao, Biggio et al., Is feature selection secure against training data poisoning? ICML, 2015

ML Security, 2022 – B. Biggio – https://unica-mlsec.github.io/mlsec

Munoz-Gonzalez, Biggio et al., Towards poisoning of deep learning..., AlSec 2017

Bilevel Optimization

- Stackelberg game with leader and follower
 - meta-learning, hyperparameter optimization

 $\max_{x_c} L(D_{val}, w^*(x_c))$

s.t. $w^*(x_c) \in \operatorname{argmin}_w \mathcal{L}(D_{tr} \cup \{x_c, y_c\}, w)$

• Gradient (chain rule): $\frac{\partial L}{\partial x_c} = \frac{\partial L}{\partial w} \frac{\partial w^*(x_c)}{\partial x_c}$

Solution path: how does w* changes w.r.t. xc ?

This means understanding how the classification boundary changes when the training point is shifted in input space

Gradient-based Poisoning Attacks

- Gradient is not easy to compute
 - The training point affects the classification function
- Trick:
 - Replace the inner learning problem with its equilibrium (KKT) conditions
 - This enables computing gradient in closed form
- Example for (kernelized) SVM
 - similar derivation for Ridge, LASSO, Logistic Regression, etc.

$$\nabla_{\boldsymbol{x}_{c}} \mathcal{A} = -\boldsymbol{y}_{k}^{\top} \frac{\partial \boldsymbol{k}_{kc}}{\partial \boldsymbol{x}_{c}} \alpha_{c} + \boldsymbol{y}_{k}^{\top} \underbrace{[\mathbf{K}_{ks} \quad \mathbf{1}]}_{k \times s+1} \underbrace{\begin{bmatrix} \boldsymbol{K}_{ss} & \mathbf{1} \\ \mathbf{1}^{\top} & 0 \end{bmatrix}^{-1} \begin{bmatrix} \frac{\partial \boldsymbol{k}_{sc}}{\partial \boldsymbol{x}_{c}} \\ 0 \end{bmatrix} \alpha_{c}}_{(s+1) \times d}$$

ML Security, 2022 – B. Biggio – https://unica-mlsec.github.io/mlsec

Biggio, Nelson, Laskov. Poisoning attacks against SVMs. ICML, 2012 Xiao, Biggio, Roli et al., Is feature selection secure against training data poisoning? ICML, 2015 Demontis, Biggio et al., Why do Adversarial Attacks Transfer? USENIX 2019

12

Experiments on MNIST digits Single-point attack

- Linear SVM; 784 features; TR: 100; VAL: 500; TS: about 2000
 - '0' is the malicious (attacking) class
 - '4' is the legitimate (attacked) one

Experiments on MNIST digits Multiple-point attack

- Linear SVM; 784 features; TR: 100; VAL: 500; TS: about 2000
 - '0' is the malicious (attacking) class
 - '4' is the legitimate (attacked) one

ICML 2022 – Test of Time Award (July 19, 2022)

The test of time award is given to a paper from ICML ten years ago that has had substantial impact on the field of machine learning, including both research and practice «The paper investigates [...]. The awards committee noted that this paper is one of the earliest and most impactful papers on the theme of poisoning attacks, which are now widely studied by the community. [...]. The committee judged that this paper initiated thorough investigation of the problem and inspired significant subsequent work.»

Winners in the last 5 years: Univ. Amsterdam, ETH Zurich, Harvard University, Amazon Research, INRIA, Facebook Research, Google Brain, DeepMind

Our paper was selected out of 244 papers published at ICML 2012

Test of Time Award:

Poisoning Attacks Against Support Vector Machines

Battista Biggio, Blaine Nelson, Pavel Laskov:

Test of Time Honorable Mention:

Building high-level features using large scale unsupervised learning

Quoc Le, Marc'Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg Corrado, Jeff Dean, Andrew Ng

On causal and anticausal learning

Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, Joris Mooij

Towards Poisoning Deep Neural Networks

- Solving the poisoning problem without exploiting KKT conditions (back-gradient)
 - Muñoz-González, Biggio et al., Towards Poisoning of Deep Learning Algorithms with Backgradient Optimization, AlSec 2017 https://arxiv.org/abs/1708.08689

Figure 5: Poisoning samples targeting the CNN.

Read more at:

J. Domke. *Generic methods for optimization-based modeling*. AISTATS, 2012.
D. Maclaurin et al. *Gradient-based hyperpar. opt. through reversible learning*. ICML, 2015.
F. Pedregosa. *Hyperparameter opt. with approximate gradient*. ICML, 2016.
L. Franceschi et al. *Bilevel progr. for hyperparameter opt. and meta-learning*. ICML, 2018.
J. Lorraine et al. *Opt. millions of hyperparameters by implicit differentiation*. AISTATS, 2020.

Poisoning Attacks on Algorithmic Fairness (ECML 2020)

Solans, Biggio, Castillo, <u>https://arxiv.org/abs/2004.07401</u>

$$\begin{split} \max_{\mathbf{x}_c} \ \mathcal{A}(\mathbf{x}_c, y_c) &= L(\mathcal{D}_{\text{val}}, \theta^{\star}) \,,\\ \text{s.t.} \ \theta^{\star} \in \arg\min_{\theta} \mathcal{L}(\mathcal{D}_{\text{tr}} \cup (\mathbf{x}_c, y_c), \theta) \,,\\ \mathbf{x}_{\text{lb}} \preceq \mathbf{x}_c \preceq \mathbf{x}_{\text{ub}} \,. \end{split}$$

Why Do Adversarial Attacks Transfer? (USENIX Sec. 2019)

- Transferability is the ability of an attack developed against a surrogate model to succeed also against a different target model
- In our paper, we show that transferability depends on
 - the vulnerability of the target model, and
 - the **alignment of** (poisoning) **gradients** between the target and the surrogate model

Sponge Poisoning

 Attacks aimed at increasing energy consumption of DNN models deployed on embedded hardware systems

19

Targeted Poisoning

Targeted Poisoning Attacks

• **Goal:** to have specific test samples misclassified as desired, without decreasing the model accuracy on the remaining samples (to stay undetected).

Targeted Poisoning Attacks as a Bi-level Problem

• **Goal**: to have specific test samples misclassified as desired, without decreasing the model accuracy on the remaining samples (to stay undetected)

$$\begin{array}{ll} \max_{\substack{x_c \\ x_c}} & L(\mathcal{D}_{\mathrm{val}}, w^{\bigstar}), \quad \text{Loss estimated on validation data} \\ \text{s.t.} & w^{\bigstar} \in \arg\min_{w} \mathcal{L}(\mathcal{D}_{\mathrm{tr}} \cup \{x_c, y_c\}, w) \quad \begin{array}{c} \text{Algorithm is trained on poisoned data} \\ (including the attack samples) \end{array}$$

- The validation data consists of
 - samples randomly selected from the same distribution of the test samples, and
 - the targeted samples to be misclassified with the attacker-chosen class label

Targeted Poisoning Attacks as a Bi-level Problem

- Dataset: MNIST; Classifier: logistic regression.
- Attacker's goal: having the digits "8" classified as "3".

Luis Muñoz-González et al., Towards Poisoning of Deep Learning Algorithms with Backgradient Optimization, AlSec 2017

How about Poisoning Deep Nets?

- ICML 2017 Best Paper by Koh et al.: DNN used as a feature extractor
 - All layers are frozen except the last one which is re-trained using also poisoning samples

How about Poisoning Deep Nets?

- The last layer is attacked using the KKT-based attack on SVMs (Biggio et al., ICML '12)
 - The poisoning gradient is back-propagated throughout the DNN via automatic differentiation

How about Poisoning Deep Nets?

Poisoning via Feature Collision

- Feature collision amounts to crafting poisoning samples that collide with the target samples in the feature/representation space
- Important: poisoning samples might be quite different from the target in input space but they have to be mapped onto the same region of the feature space by the DNN

Poisoning Frogs! Targeted Clean-Label Poisoning

- Goal: misclassifying a target sample (e.g., a fish image) as desired (e.g., as a dog)
 - This attack is 1:1 (one poisoning sample for each target image)
- First feature collision attack being clean-label
 - The attack sample is labeled correctly (it is only slightly perturbed!)

$$\underset{\mathbf{x}}{\operatorname{argmin}} \| \| f(\mathbf{x}) - f(\mathbf{t}) \|_{2}^{2} + \beta \| \| \mathbf{x} - \mathbf{b} \|_{2}^{2}$$

$$\underset{\text{small distance between}}{\operatorname{small distance between}} \qquad \underset{\text{small distance between}}{\operatorname{small distance b$$

Clean target sample **t** Label: Fish

Poisoning Frogs! Targeted Clean-Label Poisoning

- Dataset: CIFAR-10, Classifier: AlexNet trained trained end-to-end
- Poisoning images that cause a *bird* target to be misclassified as a *dog* opacity 30%.

Convex Polytope

- Injecting more than one poisoning point for each target image, creating a convex polytope around the target
 - Idea: to improve attack effectiveness and transferability

Convex Polytope

Dataset: CIFAR10

- 50 target images
- 5 poisoning points for each target

Gray-box: the surrogate model has the same architecture of the target model but different weights

Black-box: use as surrogate all the considered networks except ResNet18 and DeseNet121

Bullseye Polytope

- **Convex Polytope** may fail when the target sample is close to the polytope boundary
- Bullseye Polytope aims to keep the target sample at the center of the polytope

Convex Polytope

Bullseye Polytope

Bullseye Polytope

Dataset: CIFAR-10; 50 target images; 5 poisoning points for each target.

Settings:

- Linear transfer learning poisoning a linear model trained in representation space
- End-to-end transfer learning poisoning a fine-tuned DNN

Backdoor Poisoning

Backdoor Poisoning Attacks

- **Underlying idea:** model training is outsourced to (untrusted) third-party company
 - User retains a validation set to check that the trained model returned by the company is sufficiently accurate
 - However, the third-party company can train the model on backdoored samples (e.g. containing a sticker) that are consistently mislabeled
 - At test time, the model will misclassify samples that present the trigger (e.g., sticker) in the attacker-chosen class

ML Security, 2022 – B. Biggio – https://unica-mlsec.github.io/mlsec

T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities in the machine learning model supply chain. NIPSW. MLCS, 2017

Backdoor Poisoning Attacks

Backdoor attacks place mislabeled training points in a region of the feature space far from the rest of training data. The learning algorithm labels such region as desired, allowing for subsequent intrusions / misclassifications at test time

ML Security, 2022 – B. Biggio – https://unica-mlsec.github.io/mlsec

T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities in the machine learning model supply chain. NIPSW. MLCS, 2017
Backdoor Poisoning Attacks

Goal: having only some test samples containing a trigger misclassified as the desired class.

stop sign with the trigger misclassified as speed limit

BadNets

Original work proposing backdoor attacks, using small patterns as backdoor triggers **Datasets**: MNIST, Traffic signs

Original image

Pattern Backdoor

BadNets

- Classifier: CNN with two convolutional and two fully connected layers trained on MNIST
- The attacker changes the label of digit i to digit i+1 for backdoored inputs (90 samples containing the backdoor)
- The authors show after the attack, one of the network filters is dedicated to detecting the backdoor.

Filters with Pattern Backdoor

BadNets

- Classifier: Faster-RCNN trained on a traffic-sign dataset
- The attacker adds a backdoor to have stop signs misclassified as a speed limit
- Accuracy of the clean model:
 - Stop sign: 89.7%
 - Speed limit: 88.3%
- Accuracy of the backdoored model (yellow sticker):
 - Stop sign: 87.8%
 - Speed limit: 82.9%
 - Stop sign with trigger → speed limit: 90.3%

ML Security, 2022 – B. Biggio – https://unica-mlsec.github.io/mlsec

T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities in the machine learning model supply chain. NIPSW. MLCS, 2017

Hidden Trigger

- Idea: to hide the trigger at training time, so that poisoning samples can be injected into the training data without being detected
 - model training is not <u>outsourced</u>!
 - Similar to clean-label targeted attacks (feature collision)
- To have an image of **plane+trigger** misclassified as a **dog** (at test time), craft attack (at training time) as follows:
 - Add trigger to plane image
 - Optimize small perturbation such that the plane+trigger image collides with the target dog image in representation space

Hidden Trigger

Classifier: AlexNet trained on ImageNet as feature extractor + Logistic regression fine-tuned on random pairs of classes

	ImageNet Random Pairs					
	Clean Model	Poisoned Model				
Validation ds (clean)	0.993 ± 0.01	0.982 ± 0.01				
Validation ds + trigger	0.987 ± 0.02	0.437 ± 0.15				

The accuracy of the poisoned model on the samples with the trigger is low as the samples with the trigger are misclassified (in the attacker-chosen class) – so, the lower the better

Targeted/Backdoor Poisoning: Three Main Categories

	Test-time attack (with trigger)	Targets a predefined class/sample
Training data with trigger	BadNets,	-
Clean-label attacks (no trigger)	Hidden Trigger,	Poison Frogs, Convex Polytope, Bullseye Polytope,

Defenses against Poisoning Attacks

Poisoning Attacks: Recap

Original classifier

Categorization/Taxonomy of Poisoning Defenses

Categorization/Taxonomy of Poisoning Defenses

ML Security, 2022 – B. Biggio – https://unica-mlsec.github.io/mlsec

Categorization/Taxonomy of Poisoning Defenses

Training Time						
	Training Data Sanitization	Robust Training	Model Inspection	Model Sanitization	Trigger Reconstruction	Test Data Sanitization
Indiscriminate	\checkmark	\checkmark	_	-	_	-
Targeted	\checkmark	\checkmark	\checkmark	\checkmark	_	-
Backdoor	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Training Data Sanitization

The defender analyzes the training data, searching and removing poisoning points.

Applied against indiscriminate, targeted and backdoor poisoning.

Training Data Sanitization

These defenses are based on the rationale that poisoning points are often outliers. Thus we can detect and remove/fix them.

Biggio, Nelson, Laskov. Poisoning attacks against SVMs. ICML, 2012 Cretu et al., Casting out Demons: Sanitizing Training Data for Anomaly Sensors, S&P 2008 Nelson et al., Exploiting machine learning to subvert your spam filter, Usenix, 2008

50

ML Security, 2022 – B. Biggio – https://unica-mlsec.github.io/mlsec

Reject on Negative Impact

Consider a spam detector re-trained every week on the incoming (validated) emails. RONI aims to detect poisoning emails (spam containing good words) aimed to cause the misclassification of legitimate emails (denial of service).

Reject on Negative Impact

RONI, for each email in the training dataset (that may be a poisoning sample):

- subdivides 5 times the dataset into a training dataset (containing that email) and a validation dataset;
- compares the performance on the validation dataset of the classifier trained on

If the performance on the training dataset + the email are, on average on the 5 repetitions, worse, it classifies the new email as an attack.

Reject on Negative Impact

10.000 training data (50 % spam, 50% ham).

-Solid line ham classified as spam or unsure -Dashed line ham classified as spam

The authors use a kNN classifier to re-assign the label to all the training samples

The authors use a kNN classifier to re-assign the label to all the training samples

The authors use a kNN classifier to re-assign the label to all the training samples

The authors use a kNN classifier to re-assign the label to all the training samples

Dataset: Breast Cancer (30 features, 569 examples).

k (number of nearest neighbors) = 10

Assumptions:

- the attacker can alter only the labels (and not the feature values);
- the attacker is aware of the defense and greedily select the label to flip to maximize the classifer loss on a validation dataset.

Robust Training

The defender designs a robust model or trains a standard model with a training procedure that makes it robust against poisoning.

Applied against indiscriminate, targeted and backdoor poisoning.

It considers Ridge regression, which, given a sample x_i, predicts a real-valued y_i

The objective function of **Ridge regression** is:

TRIM modifies the training algorithm to make it less sensible to the outliers

ML Security, 2022 – B. Biggio – https://unica-mlsec.github.io/mlsec

The idea is to selectively exclude the suspected/candidate outliers at each iteration

- The suspected/candidate outliers are the N-I training points with the highest loss

Training algorithm:

$$\underset{w,b,I}{\operatorname{argmin}} L(w,b,I) = \frac{1}{|I|} \sum_{i \in I} (f(\boldsymbol{x}_i) - y_i)^2 + \lambda \Omega(\boldsymbol{w})$$
$$N = (1+\alpha)n, \qquad I \subset [1, \dots, N], \qquad |I| = n$$

Iteratively:

- Choose a subset of training data *I* of size n that minimize the loss;
- Optimize the Ridge parameters to minimize the loss on the subset I

- The points circled are the outliers that should be ignored

- The points circled are the outliers that should be ignored
- The red points are the ones ignored by TRIM

- The points circled are the outliers that should be ignored
- The red points are the ones ignored by TRIM

- The points circled are the outliers that should be ignored
- The red points are the ones ignored by TRIM

Loan dataset

887,383 samples (5K used), 89 features (purpose of the loan, total loan size, ...). Response variable: the interest rate.

(b) Loan Dataset

Adaptive Poisoning against TRIM

A solution to make the attack more effective would be to generate poisoning samples that are less distant from the actual data and thus more difficult to detect as outliers.

This can be accomplished by constraining the perturbation added to the training data.

Attack Strength vs Detectability Dilemma

Attack instances have little effect	Attack Strength	Attack instances have large effect			
Hard to detect attack instances	Detectability	Easy to detect attack instances			

Model Inspection

The defender **analyzes the trained model** (and eventually also the training data) to **detect the poisoning samples**.

Applied against targeted and backdoor poisoning.

Activation Clustering

Distinguishes poisoning from legitimate samples clustering the activations of the last layer.

For each label:

- 1. computes the activation of all the samples in the poisoned dataset with that label;
- 2. performs dimensionality reduction on the activations;
- 3. clusters them with K-means to divide them into two clusters: poisoning and legitimate.

Chen et al., Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering, Arxiv 2018

Activation Clustering

Classifier: CNN with two convolutional and two fully connected layers trained end-to-end. Dataset: MNIST. Attack: BadNet, 10% of training data poisoned.

Target	0	1	2	3	4	5	6	7	8	9	Total
AC Accuracy	99.89	99.99	99.95	100	100	100	99.94	100	100	99.99	99.97

Percentage of detected backdoored samples for class

Nearly identical results were obtained when poisoning the 15% and 33% of training data.

ML Security, 2022 – B. Biggio – https://unica-mlsec.github.io/mlsec

Chen et al., Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering, Arxiv 2018

Model Sanitization

The defender removes the effect of the poisoning samples on the trained model.

Applied against targeted and backdoor poisoning.
Rationale: Backdoored DNN misbehave on backdoored inputs while still behaving fine on clean inputs. To make this possible, **some of their filters must be dedicated to the backdoor**.

(b) Backdoor Activations (baseline attack)

The plots below shows the average activations of neurons in the final convolutional layer of a backdoored face recognition DNN for clean and backdoor inputs.

Liu et al., Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks, RAID 2018

The neurons that compose these filters are **dormant** in the presence of clean-input. Fine-pruning **detects and prune the most dormant neuron** of the DNN.

Liu et al., Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks, RAID 2018

Dataset: Face Dataset; 1283 identities; 100 images for each identity. Network: DeepID Attack: similar to BadNet, but the backdoor depicts eyeglasses. randomly selects 180 identities and add a backdoor to their images.

Backdoored image

Liu et al., Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks, RAID 2018

Dataset: Face Dataset; 1283 identities; 100 images for each identity. Network: DeepID Attack: similar to BadNet, but the backdoor depicts eyeglasses. randomly selects 180 identities and add a backdoor to their images.

Pruning-aware attack

The attacker enforces the network to learn the backdoor using neurons that are not "dormant" neurons.

Liu et al., Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks, RAID 2018

Trigger Reconstruction

The defender **analyzes the trained model** (and eventually also the training data) to **reconstruct the backdoor trigger** used by the attackers.

Applied against **backdoor** poisoning.

Formalizes trigger detection as an optimization problem:

 $\operatorname{argmin}_{\Delta,\mathbf{M}} L(f(\mathbf{x}_t), y_t)$

 $\mathbf{x}_t = \mathbf{x} \odot (\mathbf{1} - \mathbf{M}) + \Delta \odot \mathbf{M}$

where:

- M is the mask (trigger shape and location)
- ∆ is a pattern (trigger color)
- xt is a test sample
- yt is the target class

Multiplied together $M \odot \Delta$ they denote the restored trigger.

Searches the trigger that minimizes the loss w.r.t. the target class of the test sample + the trigger.

The authors show that solving that problem, you often end up with a trigger that belongs to one of these categories:

Therefore, they added some regularization terms to the original loss function to discourage these situations and restore the corresponding trigger as accurately as possible.

79

$$precision = \frac{\|\mathbf{M} \odot \mathbf{M}_t\|_1}{\|\mathbf{M}\|_1} \quad recall = \frac{\|\mathbf{M} \odot \mathbf{M}_t\|_1}{\|\mathbf{M}_t\|_1}$$
$$F_1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

- **Precision:** measures the percentage of the restored trigger area truly overlapping with the ground-truth trigger area;
- **Recall:** measures the percentage of the ground-truth area correctly restored by a detection approach;
- F1 score: harmonic mean of precision and recall (overall quality of the restored trigger)

80

Dataset: ImageNet; Backdoor: Firefox logo on the top right of the image.

-								
	Fidelity Measure							
Size	Precision		Recall		F1			
	NCleanse	TABOR	NCleanse	TABOR	NCleanse	TABOR		
20×20	0.061	0.398	0.011	0.168	0.019	0.237		
40×40	0.664	0.752	0.072	0.197	0.129	0.313		
60×60	0.898	0.779	0.082	0.118	0.150	0.205		
80×80	0.312	0.774	0.037	0.141	0.066	0.238		
100×100	0.902	0.925	0.056	0.105	0.106	0.189		

However, the results depends quite a lot on the considered dataset and on the trigger shape and pattern (e.g., the results on the GTRB dataset are better).

81

Test Data Sanitization

The defender analyzes the test data and **removes the trigger**.

Applied against **backdoor** poisoning.

First, detects and removes the trigger from the test image. Then, it restores the test image.

To detect the trigger, Februus generates a heatmap of the input regions that contribute heavily to the classifier decision.

If there is only small region of the image with a strong contribution, it is quite likely it is the one that contains the trigger.

To restore the image, they use a Generative Adversarial Network (GAN)

ML Security, 2022 – B. Biggio – https://unica-mlsec.github.io/mlsec

Ехреппения	1301001			
Task/Dataset	# of Labels	# of Training Images	# of Testing Images	Model Architecture
CIFAR10	10	50,000	10,000	6 Conv + 2 Dense
VGGFace2	170	48,498	12,322	13 Conv + 3 Dense (VGG-16)

Experimental setup:

Experimental results:

Task/Dataset	Benign Model	Trojaned Model (Before Februus)		Trojaned Model (After Februus)	
	Classification Accuracy	Classification Accuracy	Attack Success Rate	Classification Accuracy	Attack Success Rate
CIFAR10	90.34%	90.79%	100%	90.08%	0.25%
VGGFace2	91.84%	91.86%	100%	91.78%	0.00%

Recap & Take Away Messages

Many different typologies of defenses have been proposed...

- Some typologies of defense can make models more robust against many attacks;
- No defense is 100% secure if tested against adaptive attacks having sufficient strength.
- Different typologies of defenses can be combined to obtain higher robustness.