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Neural Networks for Image Classification
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Geometrical Intuition

Classifiers divide the whole input domain in regions

Each image is an element o o

of the input domain

Classification

0’_— Boundary

Undefined Behaviour @ @ @

“stop” region




How to evaluate a classifier?

Definition (classification)
Given a Neural Network f: R” — R¢
the predicted label is the largest component

Kr(x) = argmax fi(x)

1

Definition (Accuracy)
Given a distribution of images x € R3*H*xW

and an oracle O(x) € {1,...,C}

the accuracy is defined as the ratio of good predictions

A(f) =P (K¢ (x) = O(x))

Accuracy on a few known datasets

MNIST Acc >99% FMNIST Acc >99% CIFAR10 Acc >94%

GTSRB Acc >97% ImgNet Acc >94%

Accuracy and trustworthiness are not interchangeable concepts!




Sensitivity to Input Perturbation

No Gaussian Adversarial

CCoTTTTTT T ST T i Clean Input Perturbation Noise (0 = .5) Perturbation
Average Minimal Adversarial Perturbation* E ¢ ¥ ER R R

Average noise (dB) sufficient to fool the
model for different dataset

MNIST -27 dB, FMNIST -40 dB

CIFAR-10 -41dB, GTSRB -32 dB

-6 dB

SHARK PLANE
Luminosity improved by 50 %




Certifiable Robustness



Minimal Adversarial Perturbation (Binary Case)

Definition (Binary Classification)

Given a scalar continuous function f - R" - R

the binary classifier is defined on the sign of f

/cf(x){l if f(x)>0

Closest Adv.Ex

-1 if f(x)<0
oo . . ® Adversarial Example
Definition (Decision Boundary) Radius of the Minimal P
Is the region of zeros of the function Adversarial Perturbation

B={peR": f(p) =0}

Definition (Minimal Adversarial Perturbation)
Is the closest point in the decision boundary

JolulE

Balls w.r.t different [P

de(x) = inf |p — x|




Minimal Adversarial Perturbation (General Case)

Definition (Multiclass classification)
Given a continuous function f : R” — RS, A c-classes Blue Region
classifier is given by the index of the largest component

Red Region

]Cf(x) = argmax fI(X) Closest Adv.Ex
i

Definition (Minimal Adversarial Perturbation) Radius of the Minimal
. . Adversarial Perturbation
Is the distance from the closest adversarial examples

(1) = inf 4]
s.t. /Cf(X + (5) 75 /

where lis the correct class of x. Green Region




Minimal Adversarial Perturbation

Observation
The MAP of the multi-class classifier can be reduced to the Correct Region
MAP of a binary classifier. Let F(y) = fi(y) — r?a/X f(y)
and | the label of x, then the following equality holds,

Adversarial Region

o
Closest Adv.Ex

df(X, /) = dF(X),

Radius of the Minimal
Proof Adversarial Perturbation

.
.....
.
.
.

Prove first that Kr(y) #/ < F(y) <0.

Second, prove that dr(x, /) < dg(x).

.
.
"
.

Finally, prove that assuming the strict inequality brings to a _ _
Adversarial Region

contradiction.




Certifiable e-Robust Classification

Definition (Robustness in I’ norm)
Classification does not change under perturbation of bounded e B
magnitude. In formulas, a classification (x) is e-robust if

19] <e = K(x)=K(x+ )

Definition (s-robust accuracy)
Is the ratio of correct e-robust classifications

Ar(f,e) = P(Kf(x + ) = O(x), V||d]| <€)

€-robust classification

Remark

T

e “Theinputisrobust.” &
e “The classifier is robust..” x

e “The classification in x is robust...” \/




Certifiable e-Robust Classification by MAP computation

Upper Bound of the MAP

All the practical solution of the map provide an
adversarial example, which constitutes by
construction an upper bound of the MAP

de (x, 1) < [|Xaaw — x|| = dr(x, 1)

Observation
The upper-bound of the MAP provides a certification

of NOT-robustness.

The classification Kr(x) is dr(x,[)- robust.

The classification IC¢(x) is not dr(x,/)- robust.

Algorithms for MAP estimation

Method Solution lp norm # Inferences
L-BFGS Accurate 2 > 10k (slow)
Cw Accurate 2, o = 10k (slow)
DeepFool : Approximated 2, o = 20 (flash)
DDN i Approximated 2 =~ 1k (fast)
FMN ¢ Approximated 0,1,2 = 1k (fast)

aSzegedy, Christian, et al. "Intriguing properties of neural networks." arXiv preprint arXiv:1312.6199 (2013).
b carlini, Nicholas, and David Wagner. "Towards evaluating the robustness of neural networks." 2017 ieee symposium on security and privacy (sp). IEEE, 2017.
€ Moosavi-Dezfooli, et al. "Deepfool: a simple and accurate method to fool deep neural networks." CVPR. 2076.

Rony, Jérome, et al. "Decoupling direction and norm for efficient gradient-based (2 adversarial attacks and defenses." CVPR. 2019.
€ Maura Pintor et al. “Fast minimum-norm adversarial attacks through adaptive norm constraints”. NeurlPS, 2021.




Certifiable e-Robust Classification by MAP computation

MAP can be estimated (upper bounded) by following the gradient direction.

FMN Strategy’ Fast Bisection "

a
Maura Pintor et al. “Fast minimum-norm adversarial attacks through adaptive norm constraints”

PFabio Brau et al. “On the Minimal Adversarial Perturbation for Deep Neural Networks with Provable Estimation Error”.




Verification Methods



Definitions and Introduction

Definition (Verification of the robustness)
Given a classifier K and a sample x, check whether

Cx): "Wy eNKx KX =Ky

where A is a neighborhood of x

Definition (Complete and Incomplete Verifier)

¢(x) True False

Complete True False

Incomplete True/False False

True, True

False , False




Complete verification is NP-Hard

Theorem (Guy Katz et al.)
Let us assume f a ReLU Deep Neural Network, and

NX) ={y eR" : |y = x|l < ¢}
then completely check ¢(x) is NP-HARD

Definition (Minimum Problem Formulation)
Verification can be deduced by solving a minimum problem

P() =minmin  fi(y) —f;(y)

-----------------------------

Linear Constraint /

*Guy Katz et al. “Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks"




Complete verification is NP-Hard

Definition (Minimum Problem Formulation)
Verification can be deduced by solving a minimum problem

P(x) = min min fily) =fiy)

st. —e<xi—yi <eVi

Observation
The complete verification of the robustness for © norm

) : "Wy eNX) KXx)=K(y)'

is deduced by observing that
(x) & PKx)>0

*Guy Katz et al. “Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks"



Incomplete verification through relaxation

Deep Neural Network with ReLU

30 — wizU=Y 1 p, i=1,--,L
A max{O,f(i)} i=1,---,L—1

Minimum Problem Formulation

P(x) =min min  fi(y) — fi(y)

j#I yeRrn

st. —e<xi—yi <gVi

Eric Wong and Zico Kolter. “Provable Defenses via the Convex Outer Adversarial Polytope”

s B8 I

Input & and | Final layer z; and
allowable perturbations  pegp network ~ adversarial polytope

Formulation with Inequality and Equality Constraints

P(x) = min min s _ 50
%) j#I yeRrn ! s
subject to —e < x— P <e




Incomplete verification through relaxation

Convex Relaxation of ReLU Relaxed Minimum Problem
z V4 ad . .
= (L) _ 4(1)
| PG =rip iy -3
subject to . < x — /0 < ¢
) w D u D= w4 p, i=1...,L
Bounded ReLU set e A A FERECERE P B R
ZN>0 i=1,---,L-1
20 > 50 7z
z>0 — a5 L (g — 0y < 0 f0) z
7z =max{0,2} relaxedto 7>7

—uz+ (u—-"0z < —ul

Eric Wong and Zico Kolter. “Provable Defenses via the Convex Outer Adversarial Polytope”

Relaxed Linear Constraints




Incomplete verification through relaxation

Observation (Relaxation gives Incompleteness)

The relaxed problem P(x) provides an incomplete verification
of the robustness. In formulas, the robustness statement

CX): "WeNKx) KX =Ky

can be proved by checking the sign of the relaxed problem Remark The opposite implication is False

P(x)>0 = ((x) B(x)<0 % —((x)

Proof

Let C.be the set of feasible point with the non linear
constraint, and let C. the relaxed linear constraints. Since C. C C.
the following inequality holds P(x) < P(x).

Eric Wong and Zico Kolter. “Provable Defenses via the Convex Outer Adversarial Polytope”



Robust Training

Remark. Robust training » Certifiable Robust Classification (but can be helpful)

) Robust Loss Function

Madry et al. “Towards Deep Learning Models Resistant to Adversarial Attacks”



Convex Relaxed Robust Minimum Problem

Observation (No Proof)
Robust loss function can be upper bounded by

max L(fao(x +6),1) < L(x,1;0)
<e

and the solution of the the (RP) is approximated with a
sub-optimal solution.

N N
1 o1 ~ _
min N g max L(fg(x; +6),1;) < min N E_l Lo(xi, 1;;0)

i1 Ioll<e Standard Training Robust Training

Eric Wong and Zico Kolter. “Provable Defenses via the Convex Outer Adversarial Polytope”



Verification by Estimating the Lipschitz Constant

Observation

.. . . The curve’s slope is lower than L
Definition (L-Lipschitz)

A function f is L-lipschitz with respect to the [P norm if 3

vx,y €R",IFO) = FWlle < Llx = yllp :
Definition (Local L-Lipschitz property) S I B R S S
A function f is locally L-lipschitz with respect to the [P norm 08

Vo, 16llp <&, [If ) =fx+8)llp < LISl A

Gif taken from https://en.wikipedia.org/wiki/Lipschitz_continuity#/media/File:Lipschitz_Visualisierung.gif



Verification by knowing the (local) lipschitz constant

—— Not Certified (ok) !!
Theorem (Lower bound of MAP)

Let us assume f be local L-lipschitz in a large radius R, then

i) = fix)
Bu(x) _%PLQTT{ \

is a bound of the Minimal Adversarial Perturbation in [P norm. “ %
s

—

Remark € Certified !

A lower bound of the MAP provides an incomplete B, (x)
verification. If {(x) : "Wy € N(x) K(x) = K(y)" )

"e < BL(X)" = ((X) O Lower bound B

L—— Not Certified (bad) !

Qiyang Li et al. “Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks”



Estimating the lipschitz constant by the gradient

Theorem (Cross Lipschitz Bound)

Proof
. Rn RC . . _r
!_etLJi ; —;.t ,-ar:: let>'< chlgsy:eddasél, if f;Q th Let & bounded in norm by 8. (x). Consider the inequality
's L~ Lipschitz in the neighborhood Bp(x, R), then given by the definition of lipschitz function for any j and
£ consider the left side.
Au(x) = min M
J I
..... . . S (f _ f s ]
is still a lower bound of the minimal adversarial (f = £i)(x +6) = (fi — £)(x) jPlx) ()

. ;
perturbation in the [ norm. The right hand of Equation (1) is positive by definition.

Cross Lipschitz Constant

Hain and Andriushchenko. “Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation”



Estimating the lipschitz constant by the gradient

Proof

Apply the fundamental theorem of integrals to

g(t) = (fi— f;)(x + td) to deduce the following equality
Theorem (Lipschitz upper bound) )
The maximum of the gradient is an upper bound of the (i — )(x+0) — (i —F)(x)| = / dig(t) dt
cross-lipschitz constants. Let [; be defined by o dt

Use the Cauchy-Schwarz inequality to deduce that
L= max [Vfily) = Vfi(¥)lla,

yGBP(XtR)

g 1
/OV(f/—fs-)-adt <||5||p/0 IV(fi - £)q de

where g is the dual number % + % =1, then fi—f
are L;- lipschitz locally in a radius R.

and take the maximum in the neighborhood to conclude.

Hain and Andriushchenko. “Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation”



CLEVER

Cross Lipschitz Extreme Value for nEtwork Robustness

Maximum Problem MAP estimation
CW [-FGSM CLEVER
= max |[Vfi(y) = VFW)I TERRETERRE SR TN T
J yEBy (X,R) ’ J q MNIST-MLP | 1.113 0215 | 3.564 0.178 | 0.819 0.041

MNIST-CNN 1.500 0.455 | 4439 0.288 | 0.721 0.057
MNIST-DD 1.548 0.409 | 5.617 0.283 | 0.865 0.063
MNIST-BReLU| 1.337 0.433 | 3.851 0.285 | 0.833 0.065
Keydea CIFAR-MLP 0.253 0.018 | 0.885 0.016 | 0.219 0.005

. . . . . CIFAR-CNN 0.195 0.023 | 0.721 0.018 | 0.072 0.002
Estimate the maximum with multiple samplings. CIFAR.DD 0285 0032 | 1136 0024 | 0130 0.004
CIFAR-BReLU | 0.159 0.019 | 0.519 0.013 | 0.045 0.001

2 for¢ < 1to Ny do
3 for k +— 1to N, do

4 randomly select a point (%) € B, (x0, R) Remark

5 compute b;y, < || Vg(x#*))]||, via back propagation 1. Computationally expensive.

: ?gn?_ S'U {maxz{bir} } 2. Not cert!ﬁable since only a lower bound of
s end the maximum can be found.

Tsui-Wei Weng et al. “Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach”



Summary: Verification Methods

Advantages
1. Verification methods are highly reliable since they are based on the solution of well founded MPs

2. Can beinvolved in a training process to improve the (empirical) robustness of a model classification

Disadvantages
1. Verifications methods do not scale to larger networks or are typically computational expensive

2. Canrequire a complete knowledge of the model’s architecture and hidden states.




Lipschitz Bounded Neural Networks



Lipschitz constant of Neural Networks

ResNet-32

(a) MNIST (d) CIFAR10

Contour plots generated with two random orthogonal directions in the input domain of fi(x) — r?zxf,-(x)




Lipschitz constant of Neural Networks

Observation.

Feedforward Neural Networks with linear, convolutional
and residual layers are L-Lipschitz for some constant L.

MLP
LeNet
ResNet
U-Net

L-Lipschitz

Standard trainings

--------

Neural Model Random Init. F Trained
ResNet32 (CIFARI10) 2.3910° inf -
AlexNet (ImageNet) 0.78 3.68107 :
LeNet (MNIST) 2.13 3.0910% :
LeNet (FMNIST) 2.13 4.8810° -
MicronNet (GTSRB) 0.84 inf

---------

Concept schema

f Certifiable Robust Strategies \

Verifiers

Only check ¢ Estimation

MAP

4

AN 3

Lipschitz
Estimation

\

)

|

l

Regularized training Search for f that is

L-lipschitz bounded




Are Lipschitz bounded DNN good classifier?

Graphical representation of level curves of a 1-lipschitz function.

Observation The 0-level curve (white) is the decision boundary and it is the same for both functions. In formulas,

Vx e R",  Kr(x) = Kz(x) where f(x) = %X) is 1-Lipschitz.




Common deep neural networks are lipschitz

Definition (L-Lipschitz)
A function f is L-lipschitz with respect to the [P norm

X,y €RY, I (X) = FW)llp < LIIx =yl

Examples of Lipschitz Layers
Observation (Composition) ) ) )
Fully connected, Convolutional, Residual, Pooling

Composition of lipschitz functions is lipschitz

N Y .
M :> Common Deep Neural Networks are Lipschitz

Remark.
Composition of 1-Lipschitz layers is 1-Lipschitz




Linear Layers are lipschitz

Definition (Operatorial Norm)

Wv
W c Rmxn, HWHD — sup || ”P
verm {0 |IV]lp

When p=co, then norm is called uniform, if p=2 the normis

called spectral norm.

Observation
Affine functions expressed by f(x) = Wx + b are |[|W||p- lipschitz

where ||W||, is the operatorial norm of the weight matrix.

Proof
Consider the following chain of equalities

IF®) = Flls = IWy — Wx + 52bls

IF Q) =700l = (W vllp

1FO) =Flle L IWvile (Wil

= < sup
1y = xlp IVile  ~ vermvroy IvIle

LIF0) = £l < Wl lly — X[l |




1-Lipschitz Linear Layers

Normalized linear layer

Observation def normalized_linear(x: Tensor, weight: Tensor, b: Tensor)
r"""Compute a 1-lipschitz fully connected operation.
m, n = weight.shape

nmuon

The spectral norm is the largest singular value of the matrix

torch.randn(n, 1)
HAH2 ZZ'V'Anwx(ATA):: Unmx(A) v / torch.norm(v, p=2)
r _ in range(MAX_NUM_ITERS):
weight @ v
u / torch.norm(u, p=2)

Observation (Spectral Normalization)

. . . . weight. T @ u
The following layer is 1-lipschitz. e
W sigma = u.T @ weight @ v

fw(x) =Wx+b, where W= HVVH_ weight = weight / sigma
. return linear(x, weight, b)

Note that the applied weight is parameterized through W.

Remark
Power method can be used for estimating the

Takeru Miyato et al. “Spectral Normalization for Generative Adversarial Networks”



Orthogonal linear layers

Definition (Orthogonal Matrix)
A square matrix Q is orthogonal if and only if

QQ'=Q'Q=1

Observation

An fully connected layer with an orthogonal weight
fo(x) =Qx+b

is 1-Lipschitz with respect to the euclidean norm.

Cem Anil et al. “Sorting Out Lipschitz Function Approximation”. (2019)

Bjorck and Bowie. "An iterative algorithm for computing the best estimate of an orthogonal matrix”. (1971)

Bjorck Orthogonalization
The following iterative method converge to an orthogonal
matrix starting from Qy = W if |W|.<1,

Ac=1— Ql Q

1. 3., (-
Qi1 = Qi [ I+ A+ A+ +(-1)

2 8 p /-

N|—=

Remark
The parameterized weight Q, is orthogonal for k~20, and
depends in a differentiable manner from .




Orthogonal linear layers

Cayley Transformation’
A=W-—Ww
Q=(-AU+A""

a
Asher Trockmann et al. “Orthogonalizing Convolutional Layers with the Cayley Transform”

bSahil Singla et al. “Skew Orthogonal Convolutions”.

Exponential Mapb

A=W —W

I
[M]¢
=) %

Q =exp(A) :




1-Lipschitz Convolutions (no details)

Output Y € RM*3x3 Kernel K € RMx¢x2x2 Input X € RE*#x4
(%4
M/l 2|3 L) 20113 | 4
4|56 = d S|e]7|8 )
71819 91011 |12 //‘7//
\)\\C 13[1af1s|16 &4
o':\ C input channel A\_
lDBTmatrix i
Input channel 1 Input channel € %
Observation CH TR R Ran Fla
Convolutions are Lipschitz functions. FEIp N CEECCEE NN _CEECZEE c{o
? 5 | -§ 5 B, BN D, By, ¢ b, E‘I
§ Z é-b B, Cy| D, By, € D, :_:
Proof o 17| Qy B, €y D, By ¢, D, E
. . 8 8 B, Cyyf D, B, Cyd D, B
Convolutions are particular case of (sparse) B “BE o e
linear layers, that can be represented L o T T * B
through a double-block Toeplitz matrix. B e s N B
Sra] E+[] B G Dl W r o 3 [
? 5| .-El s B Ga| D B G Du E ]
2rsl &« B Ga| D Gl D1 '§ 2
851 &+ G D B D §.~:?—
8| 8 B Ga B Bl Gl =
sl 9 Ga D B D] =
Y =KX %

Wang et al. “Orthogonal Convolutional Neural Networks"



Orthogonal Convolutions (no details)

. a
Cayley Transformation Exponential Map ’

A=W—W"

Q=(-A(+A)" o b

Q =exp(A) := ZF
k=0

Orthogonalizing a
multi-channel convolution...

‘ N NMEENE

Cayley( ) :F*Cayley( .-).F Lx, X L %! X Lx2X L#3X

T 1! 2! 3!

..can be done efficiently by orthogonalizing (c) Convolution exponential (L e X)
a Fourier-domain block-diagonal matrix.

a
Asher Trockmann et al. “Orthogonalizing Convolutional Layers with the Cayley Transform”

Psanil Singla. “Skew Orthogonal Convolutions”.




1-Lipschitz activation functions

e Order of
Derivative of g, g'(z) Range e R +
continuity

o

Name ® Plot Function, g(z)

Heny / d : Fooies) G Orthogonal Permutation Linear Unit ~

Binary step i {(l) g: ; g 0 {0,1} c1 x ‘a : Z= OPLU(a)

I 000 0 00
et L o 9(&)(1 — g(a)) ©1) c= 010000
Hyperbolic i e —e ™ V . D(Vl) 000 100
i L e — - =

tangent (tanh) _/ tanh(z) = e 1-g(a)* =11 c 0001 o o0 0

L0 ife<0 0 ifz <0 00 0 010 1
s nid et {z g { 1 Haod [0,00) e
unit (ReLU) = ma.x(O,z)*-a:lDo undefihed ‘fe =0 00 0 011 0
Gaussian Error 1 z
Linear Unit 2° (1 et (ﬁ)) B(z) + zp(z) (-0.17...,00) |C®
(GELU)F! i = 28(z)
Softplus'®! 77_/ In(1+€*) rle”- (0,00) (655 b
Exponential / | {a(«f -1) ifs<0 e s =0 I Group Sort Activation Function
linear unit z ifa>0 {1 ifz >0 (~a, 00) {01) §_~
(ELU)™ EEE with parameter ¢ 1 ifz=0anda=1 otherwise

Scaled / /\{ afe® —1) ifz<0 £| . N
i z ifz >0 . sort sort sort sort
exponential / )‘{ ae® ifz<0 (236100) o0 x

linear unit / with parameters A = 1.0507 1 ifz >0

(SELU)I = and o = 1.67326

Leaky rectified . . 0.01 ife<0 |
linear unit (Leaky { 2.013: gz ; g 1 ifz>0 (—00, 00) c°
ReLU)* = undefined ifz =0

a
Chernodub et al. “Norm-preserving Orthogonal Permutation Linear Unit Activation Functions (OPLU)"

bcem Anil et al. “Sorting Out Lipschitz Function Approximation”




Evaluation of the CRA

Definition (s-robust accuracy)
Is the ratio of correct s-robust classifications

Ar(f,e) = P(Kr(x+ 9) = O(x), V||d] <¢)

Reminder (Lower bound of MAP)
Let us assume f be local L-lipschitz in a large radius R, then

Bi(x) = min %

is a bound of the Minimal Adversarial Perturbation in [P norm.

Definition (s-robust accuracy - operative -)
Is the ratio of correct classifications far from the boundary

Ag(f,e) =P (Ke(x) = O(x), Bu(x) > €)

— not &-robust




Theoretical maximum CRA for CIFAR-10

plane

Euclidean pairwise distances measured
on the CIFAR-10 dataset. Theoretical
100% accuracy is possible for

€=1.8, since is half of the distance
between the two closest images.

plane 0.00 auto

auto 7.56 0.00 bird

bird 393 698 000 cat —— ——
Two closest classes

cat 4.97 743 512 0.00 deer

Two farthermost classes 140000
deer 443 693 422 522 120000
100000
dog 588 784 473 0.00 fro =
s g £ 80000
(@)

60000
5.51 0.00 horse

frog 453 745 | 3.60

40000

horse 548  7.85 5.59 6.23 5.51 0.00 ship 20000

O.
485 563 468 622  0.00 0 20 40

Distance Distribution, N=5*4*10°

ship 4.22

truck 710 6.05 7.47 6.96 7.83 6.98




Evaluating the CRA on CIFAR-10

CRA on CIFAR10 -~ & Model
_7::\. < EuNet
b
1. Increasing ¢, the CRA [%] drops \\\‘\\ [ LCamiet | |
60 e, \: o LipConvNet5
. . . \‘\ —— ResNet9
2. Even with small values of g, the cra of Lipschitz — 50 " \:
models is particularly lower than then accuracy E \‘.\2\
§ 40 AN N \C
.. : g \-\\
Definition (e-robust accuracy - operative -) < 2y AN\
. . . o,
Is the ratio of correct classifications far from the boundary S '\\ \.\
20 s
~ \. \FQ
Ar(f,2) = B(Kr(x) = O(x), Aulx) > ) oL baseline____ N
.\.:5\.\
0 .\.\::37
Update (January 2024) - - - - - 120
CRA on CIFAR-10 has been increased up to 78 % !! ' ' ' ' ' '

&
Robust Accuracy w.r.t 2-norm for different values of €

b Fabio Brau, Giulio Rossolini, Alessandro Biondi and Giorgio Buttazzo., “Robust-by-Design Classification with Unitary-Gradient Neural Networks”.
cQiyang Li et al. “Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks"
dsahil Singla. “Skew Orthogonal Convolutions”.

Asher Trockmann et al. “Orthogonalizing Convolutional Layers with the Cayley Transform”




Summary: Lipschitz Bounded Neural Networks

Advantages
1. Lipschitz Bounded Neural Networks allow certifiable classification at the cost of a single forward step

2. The forward of a model is not slower than a vanilla unbounded Neural Network

Disadvantages
1. Training of the models with orthogonal layers is slower than vanilla unbounded models

2. Accuracy is particularly low even with small ¢, and does not match still the SOTA of




Randomized Smoothing



Randomized Smoothing Strategy

Definition (Smooth Classifier)
Given a base classifier f : R" — {1,--- ,C},and a
value g, the smooth classifier g, is defined by

go(X) := argrcﬂaXPNN(o,a/){f(X +¢) =c}

where N(0,01) is the gaussian distribution.

Left. Classification Regions of the base classifier
Right. Class frequency of perturbed sample x.

Jeremy Cohen et al. “Certified Adversarial Robustness via Randomized Smoothing”



Certifiable robust classification of the RS strategy

Theorem (Certification radius of RS)
Let P(x) be the vector of probabilities defined by Pb(X) Pa(x)

Pc(X) =Pon,onif(x+e) =c}

and let a and b the top-2 most probable classes. Then go(x)
is certifiable R(x)-robust for

R=Z((Pa(x))™" = ®(Py(x))"Y) ,
y (PRGN 2 (P00) ) B(P,(0) " B(Pa(x)!

where @ is the cumulative gaussian distribution function. D—DZR/O
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Certifiable robust classification proof (sketch)

Proof (Part 1) (for o = 1)
Let P(x) be the vector of probabilities defined by

Pc(X) = Puno,on{f(x +e) =c}
Observe that by definition of density function

P.(x) = /Rn Lir(x)=c} (x + ) N (0, I)(g)de
and by changing variable

P = [ Lisi=ar ()N (0. 1)(x — )

that is the convolution with the gaussian density
function of the base classifier f

PC(X) — (l{f(x):c} *N(O’ l))(X) .

Lemma (Salmann)
Convolving with the gaussian kernel produces a lipschitz
function, from which we deduce that

Ve,  Ge(x) = @ 1(P.(x)) is 1-Lipschitz

Proof (Part I1)

Since G is 1-lipschitz for each component, then the cross
lipschitz constant are L; = 2. By applying the Hein
theorem for the certifiable robustness we deduce that

Ga(x) = Gj(x)

Belec) = min >
il
- (Ga(x) = g GJ(X)>
= 2 (G~ Golx) = R(x)
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How to estimate the Smooth Classifier?

Pc(X) = Popr(o,0n{f (X 4+ €) = ¢} has no an explicit expression !

Montecarlo Approach
Lete,,..., €, sampled from A (0,o/)

#{i: fx+e)=a}

4
with a confidence level of a
n3
=
e
©2
. . 1
Computational Complexity
0
Larger radius require huge amount of samples 102 10* 10°
R = 0.5 = 20 with a confidence of 9990% requires number of samples

evaluating = 7000 samples
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Evaluation of certified robust accuracy for RS

Remind (robust accuracy - operative)

AR(f,€) = P (Kr(x) = O(x), Bi(x) > ¢) where  §(x) =R = 5 (®(Pa(x))™" — ®(Py(x))™")

| Q

CIFAR10, confidence 99.999%, samples 10°

1.0

\ — 0=0.12
038 — 0=0.25
g —— 0=0.50
8 0.6 — o0=1.00
g undefended
D04
=
5
o 0.2

0.0 S e =
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14
radius
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Smooth Adversarial Training

Definition (Base Classifier)
In the case of classifier deduced by a DNN

f(x) := argmax; Fj(X)

Definition (Soft Smooth Classifier)
The (hard) smoothed classifier can be substituted by

G (X) = EENN(O,O‘/) [F(X + 5)]

from which classes are deduced by argmax

Definition (Smooth Attack)

The attacker can leverage the smoot classifier
to deduced an attack, where the expectation

X = argmax L (G,(2),C))
llz=xlI<p

= argmax (— log E. (0,01 [F(X +€)c])
llz=xlI<p

is approximated with a monte carlo sampling.

V,LcE (GU(Z), C) ~ —V;log (% Z F(Z + 5i)c)
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Conclusion

/ Strategies for Certifiable Robustness \

Verifiers MAP
Only check ¢ Estimation

( N\
Lipschitz
Estimation

- /

e \Verification e Lipschitz Bounded DNNs

e Local Lipschitz Estimation e Randomized Smoothing
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