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Neural Networks for Image Classification
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Geometrical Intuition
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Classification 
Boundary

“stop” region

Undefined Behaviour

Classifiers divide the whole input domain in regions

Each image is an element 
of the input domain



How to evaluate a classifier?

MNIST Acc >99% FMNIST Acc >99% CIFAR10 Acc >94%

GTSRB Acc >97% ImgNet Acc >94%

Accuracy on a few known datasets Definition (classification)
Given a Neural Network
the predicted label is the largest component 

Accuracy and trustworthiness are not interchangeable concepts!

Definition (Accuracy)
Given a distribution of images

and an oracle

the accuracy is defined as the ratio of good predictions 
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Sensitivity to Input Perturbation

No 
Perturbation

Gaussian 
Noise (σ = .5)

-∞ dB -6 dB

Clean Input

SHARK

SHARK PLANE

Average Minimal Adversarial Perturbation*
Average noise (dB) sufficient to fool the 
model for different dataset

MNIST  -27 dB , FMNIST  -40 dB

CIFAR-10  -41 dB, GTSRB  -32 dB

Adversarial 
Perturbation

-30 dB

SHIP
Luminosity improved by 50 %
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Certifiable Robustness



Minimal Adversarial Perturbation (Binary Case)
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Definition (Minimal Adversarial Perturbation)
Is the closest point in the decision boundary

Adversarial ExampleDefinition (Decision Boundary)
Is the region of zeros of the function

Radius of the Minimal 
Adversarial Perturbation

d

Definition (Binary Classification)

Given a scalar continuous function

the binary classifier is defined on the sign of f

l1 l2 lp l∞

Balls w.r.t different lp 

Closest Adv.Ex



Minimal Adversarial Perturbation (General Case)
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Closest Adv.Ex
d

Red RegionBlue Region

Green Region

Radius of the Minimal 
Adversarial Perturbation

Definition (Multiclass classification)
Given a continuous function                         .. A C-classes 
classifier is given by the index of the largest component

Definition (Minimal Adversarial Perturbation)
Is the distance from the closest adversarial examples

where l is the correct class of x.



Minimal Adversarial Perturbation
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Observation

The MAP of the multi-class classifier can be reduced to the 

MAP of a binary classifier. Let 

and l the label of x, then the following equality holds,

.

Proof

Prove first that                                                     .

Second, prove that         .

Finally, prove that assuming the strict inequality brings to a 

contradiction.

d

Adversarial RegionCorrect Region

Adversarial Region

Radius of the Minimal 
Adversarial Perturbation

Closest Adv.Ex



Certifiable ɛ-Robust Classification
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Ɛ

Ɛ

Ɛ

Ɛ

Ɛ-robust classification

Definition (Robustness in lp norm)
Classification does not change under perturbation of bounded
magnitude. In formulas, a classification           is ɛ-robust if

not Ɛ-robust classification

Remark

● “The input is robust…” 

● “The classifier is robust…” 

● “The classification in x is robust…”

Definition (ɛ-robust accuracy)
Is the ratio of correct ɛ-robust classifications



The classification             is                - robust. 

The classification             is not                - robust. 

Certifiable ɛ-Robust Classification by MAP computation
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Method Solution lp norm # Inferences

L-BFGS Accurate 2 > 10k (slow)

CW Accurate 2, ∞ ≈ 10k (slow)

DeepFool Approximated 2, ∞ ≈ 20 (flash)

DDN Approximated 2 ≈ 1k (fast)

FMN Approximated 0,1,2,∞ ≈ 1k (fast)

Algorithms for MAP estimation

a

b

c

d

e

Upper Bound of the MAP
All the practical solution of the map provide an 
adversarial example, which constitutes by 
construction an upper bound of the MAP

Observation
The upper-bound of the MAP provides a certification 
of NOT-robustness. 

Szegedy, Christian, et al. "Intriguing properties of neural networks." arXiv preprint arXiv:1312.6199 (2013).
Carlini, Nicholas, and David Wagner. "Towards evaluating the robustness of neural networks." 2017 ieee symposium on security and privacy (sp). IEEE, 2017.
Moosavi-Dezfooli, et al. "Deepfool: a simple and accurate method to fool deep neural networks." CVPR. 2016.
Rony, Jérôme, et al. "Decoupling direction and norm for efficient gradient-based l2 adversarial attacks and defenses." CVPR. 2019.
Maura Pintor et al.  “Fast minimum-norm adversarial attacks through adaptive norm constraints”. NeurIPS, 2021.

a
b
c
d
e



Certifiable ɛ-Robust Classification by MAP computation
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Maura Pintor et al.  “Fast minimum-norm adversarial attacks through adaptive norm constraints”
Fabio Brau et al. “On the Minimal Adversarial Perturbation for Deep Neural Networks with Provable Estimation Error”.

a

b

aFMN Strategy

MAP can be estimated (upper bounded) by following the gradient direction.

bFast Bisection



Verification Methods



Definitions and Introduction
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Definition (Verification of the robustness)
Given a classifier     and a sample x, check whether

where       is a neighborhood of x

True  False

Complete True False

Incomplete True/False False

Definition (Complete and Incomplete Verifier)

Ɛ

Ɛ

Ɛ

Ɛ

False , False 

True , True 

True , False 



Complete verification is NP-Hard
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Theorem (Guy Katz et al.)
Let us assume f a ReLU Deep Neural Network, and

then completely check          is NP-HARD  

Ɛ

Ɛ

Ɛ

Ɛ

Definition (Minimum Problem  Formulation)
Verification can be deduced by solving a minimum problem

Linear Constraint

*Guy Katz et al. “Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks”



Observation 
The complete verification of the robustness for ∞ norm 

is deduced by observing that 

Complete verification is NP-Hard

17

Definition (Minimum Problem  Formulation)
Verification can be deduced by solving a minimum problem

*Guy Katz et al. “Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks”

Ɛ

Ɛ

Ɛ

Ɛ



Incomplete verification through relaxation
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Deep Neural Network with ReLU

Formulation with Inequality and Equality ConstraintsMinimum Problem  Formulation

NON Linear Constraint
Eric Wong and Zico Kolter. “Provable Defenses via the Convex Outer Adversarial Polytope”



Incomplete verification through relaxation
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Convex Relaxation of ReLU

relaxed to

Relaxed Minimum Problem

Relaxed Linear Constraints

Eric Wong and Zico Kolter. “Provable Defenses via the Convex Outer Adversarial Polytope”



Incomplete verification through relaxation

Observation (Relaxation gives Incompleteness)

The relaxed problem         provides an incomplete verification 
of the robustness. In formulas, the robustness statement

can be proved by checking the sign of the relaxed problem

 

Proof

Let      be the set of feasible point with the non linear 
constraint, and let      the relaxed linear constraints. Since                 
the following inequality holds                         .  

20Eric Wong and Zico Kolter. “Provable Defenses via the Convex Outer Adversarial Polytope”

Remark The opposite implication is False



Robust Training

21

Remark. Robust training ⇏ Certifiable Robust Classification (but can be helpful)

Robust Minimization Problem.

Robust Loss Function

Madry et al. “Towards Deep Learning Models Resistant to Adversarial Attacks”



Observation (No Proof)
Robust loss function can be upper bounded by

and the solution of the the (RP) is approximated with a 
sub-optimal solution.

Convex Relaxed Robust Minimum Problem

22Eric Wong and Zico Kolter. “Provable Defenses via the Convex Outer Adversarial Polytope”

Standard Training Robust Training



Verification by Estimating the Lipschitz Constant
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Definition (L-Lipschitz)
A function f is L-lipschitz with respect to the lp norm if 

Definition (Local L-Lipschitz property)
A function f is locally L-lipschitz with respect to the lp norm

Observation
The curve’s slope is lower than L 

Gif taken from https://en.wikipedia.org/wiki/Lipschitz_continuity#/media/File:Lipschitz_Visualisierung.gif



Verification by knowing the (local) lipschitz constant
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βL(x)

βL(x)

Theorem (Lower bound of MAP)
Let us assume f be local L-lipschitz in a large radius R, then 

is a bound of the Minimal Adversarial Perturbation in lp norm.

Remark
A lower bound of the MAP provides an incomplete 
verification. If 

Ɛ
Ɛ

Ɛ Certified !!

βL(x)

Radius to test

Lower bound β
Not Certified (bad) !!

Not Certified (ok) !!

Qiyang Li et al. “Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks”



Proof
Let δ bounded in norm by         . Consider the inequality 
given by the definition of lipschitz function for any j and 
consider the left side.

                                                                                            (1)

The right hand of Equation (1) is positive by definition.

Estimating the lipschitz constant by the gradient
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Theorem (Cross Lipschitz Bound)

Let                      , and let x classified as l, if 
is      - Lipschitz in the neighborhood                 , then 

is still a lower bound of the minimal adversarial 
perturbation in the lp norm.

Cross Lipschitz Constant

Hain and Andriushchenko. “Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation”



Estimating the lipschitz constant by the gradient
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Theorem (Lipschitz upper bound)
The maximum of the gradient is an upper bound of the 
cross-lipschitz constants. Let     be defined by 

    ,

where q is the dual number                    , then
are     - lipschitz locally in a radius R.

Proof 
Apply the fundamental theorem of integrals to
                            to       to deduce the following equality

               .

Use the Cauchy-Schwarz inequality to deduce that

and take the maximum in the neighborhood to conclude.

Hain and Andriushchenko. “Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation”



CLEVER
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Keydea
 Estimate the maximum with multiple samplings.

Maximum Problem

Cross Lipschitz Extreme Value for nEtwork Robustness

MAP estimation

Remark
1. Computationally expensive.
2. Not certifiable since only a lower bound of 

the maximum can be found.

Tsui-Wei Weng et al. “Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach”



Summary: Verification Methods
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Advantages

1. Verification methods are highly reliable since they are based on the solution of well founded MPs

2. Can be involved in a training process to improve the (empirical) robustness of a model classification

Disadvantages

1. Verifications methods do not scale to larger networks or are typically computational expensive

2. Can require a complete knowledge of the model’s architecture and hidden states.



Lipschitz Bounded Neural Networks



Lipschitz constant of Neural Networks
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LeNet-5 ResNet-32

Contour plots generated with two random orthogonal directions in the input domain of 



Lipschitz constant of Neural Networks
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Observation. 
Feedforward Neural Networks with linear, convolutional 
and residual layers are L-Lipschitz for some constant L.

L-Lipschitz

MLP
LeNet

ResNet
U-Net

Standard trainings 
don’t care about L

Concept schema

Certifiable Robust Strategies

Verifiers
Only check ζ 

MAP
Estimation

Lipschitz 
Estimation

Regularized training

Aim of the Section

Search for f that is 
L-lipschitz bounded



Are Lipschitz bounded DNN good classifier?
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Observation The 0-level curve (white) is the decision boundary and it is the same for both functions. In formulas,

         where                                 is 1-Lipschitz.

Graphical representation of level curves of a 1-lipschitz function.



Common deep neural networks are lipschitz
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Observation (Composition)

Composition of  lipschitz functions is lipschitz

Examples of Lipschitz Layers

Fully connected, Convolutional, Residual, Pooling

Remark. 
Common Deep Neural Networks are Lipschitz

Definition (L-Lipschitz)
A function f is L-lipschitz with respect to the lp norm  

Remark.
Composition of 1-Lipschitz layers is 1-Lipschitz



Linear Layers are lipschitz
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Observation
Affine functions expressed by                           are          - lipschitz

where           is the operatorial norm of the weight matrix.

Definition (Operatorial Norm)

When p=∞, then norm is called uniform, if p=2  the norm is 

called spectral norm.

Proof
Consider the following chain of equalities



1-Lipschitz Linear Layers
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Observation
The spectral norm is the largest singular value of the matrix

Takeru Miyato et al. “Spectral Normalization for Generative Adversarial Networks”

Observation (Spectral Normalization)
The following layer is 1-lipschitz. 

Note that the applied weight is parameterized through W.

Remark
Power method can be used for estimating the 

Normalized linear layer



Orthogonal linear layers
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Definition (Orthogonal Matrix)
A square matrix Q is orthogonal if and only if

Observation
An fully connected layer with an orthogonal weight

is 1-Lipschitz  with respect to the euclidean norm.

Bjorck Orthogonalization
The following iterative method converge to an orthogonal 
matrix starting from                 if       ,

               .

Remark
The parameterized weight Qk  is orthogonal for k~20, and 
depends in a differentiable manner from W.

Cem Anil et al. “Sorting Out Lipschitz Function Approximation”. (2019)
Björck and Bowie. ”An iterative algorithm for computing the best estimate of an orthogonal matrix”. (1971)



Orthogonal linear layers
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Cayley Transformation Exponential Mapa b

Asher Trockmann et al.  “Orthogonalizing Convolutional Layers with the Cayley Transform”
Sahil Singla et al. “Skew Orthogonal Convolutions”.

a

b



1-Lipschitz Convolutions (no details)

38Wang et al. “Orthogonal Convolutional Neural Networks”

Observation
Convolutions are Lipschitz functions.

Proof
Convolutions are particular case of (sparse) 
linear layers, that can be represented 
through a double-block Toeplitz matrix.



Orthogonal Convolutions (no details)

39

Cayley Transformation Exponential Map
a b

Asher Trockmann et al.  “Orthogonalizing Convolutional Layers with the Cayley Transform”
Sahil Singla. “Skew Orthogonal Convolutions”.

a

b



1-Lipschitz activation functions

40
Chernodub et al.  “Norm-preserving Orthogonal Permutation Linear Unit Activation Functions (OPLU)”
Cem Anil et al. “Sorting Out Lipschitz Function Approximation”

a

b

Group Sort Activation Function
b

Orthogonal Permutation Linear Unit
a



Evaluation of the CRA
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Definition (ɛ-robust accuracy)
Is the ratio of correct ɛ-robust classifications

Reminder (Lower bound of MAP)
Let us assume f be local L-lipschitz in a large radius R, then 

is a bound of the Minimal Adversarial Perturbation in lp norm.

Definition (ɛ-robust accuracy - operative -)
Is the ratio of correct classifications far from the boundary 

Ɛ

Ɛ

Ɛ

Ɛ

Ɛ-robust 

not Ɛ-robust



Theoretical maximum CRA for CIFAR-10
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plane

plane 0.00 auto

auto 7.56 0.00 bird

bird 3.93 6.98 0.00 cat

cat 4.97 7.43 5.12 0.00 deer

deer 4.43 6.93 4.22 5.22 0.00 dog

dog 5.88 7.84 4.73 6.03 4.64 0.00 frog

frog 4.53 7.45 3.60 5.15 4.64 5.51 0.00 horse

horse 5.48 7.85 5.00 6.29 5.59 6.23 5.51 0.00 ship

ship 4.22 6.82 5.13 5.78 4.85 5.63 4.68 6.22 0.00

truck 7.10 8.09 6.87 6.52 6.05 7.47 6.96 7.83 6.98

Euclidean pairwise distances measured 
on the CIFAR-10 dataset. Theoretical 
100% accuracy is possible for
ε = 1.8 , since is half of the distance 
between the two closest images.

Two closest classes

Two farthermost classes

Distance Distribution, N=5*4*106



Evaluating the CRA on CIFAR-10
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CRA on CIFAR 10

1. Increasing ε, the CRA [%] drops

2. Even with small values of ε, the cra of Lipschitz 
models is particularly lower than then accuracy

baseline

Robust Accuracy w.r.t 2-norm for different values of ε

Fabio Brau, Giulio Rossolini, Alessandro Biondi and Giorgio Buttazzo., “Robust-by-Design Classification with Unitary-Gradient Neural Networks”.
Qiyang Li et al. “Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks”
Sahil Singla. “Skew Orthogonal Convolutions”.
Asher Trockmann et al.  “Orthogonalizing Convolutional Layers with the Cayley Transform”

a
b
c
d

a
b
c
d

Definition (ɛ-robust accuracy - operative -)
Is the ratio of correct classifications far from the boundary 

Update (January 2024)
CRA on CIFAR-10 has been increased up to 78 % !!



Summary: Lipschitz Bounded Neural Networks 
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Advantages

1. Lipschitz Bounded Neural Networks allow certifiable classification at the cost of a single forward step 

2. The forward of a model is not slower than a vanilla unbounded Neural Network

Disadvantages

1. Training of the models with orthogonal layers is slower than vanilla unbounded models

2. Accuracy is particularly low even with small ε, and does not match still the SOTA of 



Randomized Smoothing



Definition (Smooth Classifier)
Given a base classifier                                     , and a 
value σ, the smooth classifier       is defined by

where                 is the gaussian distribution.          

Randomized Smoothing Strategy

46Jeremy Cohen et al. “Certified Adversarial Robustness via Randomized Smoothing”

Left. Classification Regions of the base classifier
Right. Class frequency of perturbed sample x.



Certifiable robust classification of the RS strategy
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Theorem (Certification radius of RS)
Let  P(x) be the vector of probabilities defined by

and let a and b the top-2 most probable classes. Then gσ(x) 
is certifiable R(x)-robust for

   
         ,

where     is the cumulative gaussian distribution function. 2R/σ

Hadi Salman et al. “Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers”



Proof (Part I) (for σ = 1)
Let  P(x) be the vector of probabilities defined by

Observe that by definition of density function

and by changing variable

that is the convolution with the gaussian density 
function of the base classifier f

   .

Certifiable robust classification proof (sketch)
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Hadi Salman et al. “Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers”

Lemma (Salmann)
Convolving with the gaussian kernel produces a lipschitz 
function, from which we deduce that

    is 1-Lipschitz

Proof (Part II)
Since G is 1-lipschitz for each component, then the cross 
lipschitz constant are      = 2. By applying the Hein 
theorem for the certifiable robustness we deduce that  



How to estimate the Smooth Classifier?
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Montecarlo Approach
Let ε1 ,…, εn sampled from

with a confidence level of α 

has no an explicit expression !!

Computational Complexity

Larger radius require huge amount of samples
R = 0.5 ≈ 2σ with a confidence of 99.90% requires 
evaluating ≈ 1000 samples

Jeremy Cohen et al. “Certified Adversarial Robustness via Randomized Smoothing”



Evaluation of certified robust accuracy for RS
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Remind (robust accuracy - operative)

CIFAR10, confidence 99.999%, samples 105

where

Jeremy Cohen et al. “Certified Adversarial Robustness via Randomized Smoothing”



Smooth Adversarial Training
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Definition (Base Classifier)
In the case of classifier deduced by a DNN

Definition (Soft Smooth Classifier)
The (hard) smoothed classifier can be substituted by

from which classes are deduced by argmax

Definition (Smooth Attack)

The attacker can leverage the smoot classifier 
to deduced an attack, where the expectation

is approximated with a monte carlo sampling.

Hadi Salman et al. “Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers”



Conclusion
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Strategies for Certifiable Robustness

Verifiers
Only check ζ 

MAP
Estimation

Lipschitz 
Estimation

Randomized
Smoothing

● Verification

● Local Lipschitz Estimation 

● Lipschitz Bounded DNNs

● Randomized Smoothing  
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