

Evasion Attacks / Adversarial Examples

Battista Biggio

Department of Electrical and Electronic Engineering University of Cagliari, Italy

Attacks against Machine Learning

Attacker's Goal

	Misclassifications that do not compromise normal system operation	Misclassifications that compromise normal system operation	Querying strategies that reveal confidential information on the learning model or its users
Attacker's Capability	Integrity	Availability	Privacy / Confidentiality
Test data	Evasion (a.k.a. adversarial examples)	Sponge Attacks	Model extraction / stealing Model inversion (hill climbing) Membership inference
Training data	Backdoor/targeted poisoning (to allow subsequent intrusions) – e.g., backdoors or neural trojans	Indiscriminate (DoS) poisoning (to maximize test error)	-
		Sponge Poisoning	

Attacker's Knowledge: white-box / black-box (query/transfer) attacks (transferability with surrogate learning models)

Evasion Attacks against Machine Learning at Test Time

Biggio, Corona, Maiorca, Nelson, Srndic, Laskov, Giacinto, Roli, ECML-PKDD 2013

- Goal: maximum-confidence evasion
- Knowledge: perfect (white-box attack)
- Attack strategy:

 $\min_{x'} g(x')$
s. t. $||x - x'||_p \le d_{\max}$

- Non-linear, constrained optimization
 - Projected gradient descent: approximate solution for smooth functions
- Gradients of g(x) can be analytically computed in many cases
 - SVMs, Neural networks

Computing Descent Directions

An Example on Handwritten Digits

- Nonlinear SVM (RBF kernel) to discriminate between '3' and '7'
- Features: gray-level pixel values (28 x 28 image = 784 features)

Problem: Do We Always Evade with Gradient Descent?

- No! Look at the rightmost plot:
 - Many red samples do not cross the boundary ...
 - ... even if they are able to get sufficiently far from the red class

Solution 1: Kernel Density Estimation (KDE)

- Add KDE of the target class y_t to the objective function
 - to attract the attack samples towards the target class
 - Trade-off parameter λ : evasion rate vs perturbation size

 $\min_{x'} g(x') - \lambda p(x'|y_t)$ s.t. $||x - x'||_p \le d_{\max}$

Gradient Descent with KDE (GD-KDE)

Input: \mathbf{x}^{0} , the initial attack point; t, the step size; λ , the trade-off parameter; $\epsilon > 0$ a small constant.

Output: \mathbf{x}^* , the final attack point.

1: $m \leftarrow 0$. 2: repeat 3: $m \leftarrow m+1$ 4: Set $\nabla F(\mathbf{x}^{m-1})$ to a unit vector aligned with $\nabla g(\mathbf{x}^{m-1}) - \lambda \nabla p(\mathbf{x}^{m-1}|y^c = -1)$. 5: $\mathbf{x}^m \leftarrow \mathbf{x}^{m-1} - t \nabla F(\mathbf{x}^{m-1})$ 6: if $d(\mathbf{x}^m, \mathbf{x}^0) > d_{\max}$ then 7: Project \mathbf{x}^m onto the boundary of the feasible region. 8: end if 9: until $F(\mathbf{x}^m) - F(\mathbf{x}^{m-1}) < \epsilon$ 10: return: $\mathbf{x}^* = \mathbf{x}^m$

KDE gradient (RBF kernel):

$$\nabla p(x \mid y^{c} = -1) = -\frac{2}{nh} \sum_{i \mid y_{i}^{c} = -1} \exp\left(-\frac{||x - x_{i}||^{2}}{h}\right) (x - x_{i})$$

Example on Handwritten Digits

Solution 2: Adversarial Initialization

- We do not actually need density estimation
 - Smarter idea: to initialize the attack from a point in the target class!

From White-box to Black-box Attacks

Bounding the Adversary's Knowledge

- Only feature representation and (possibly) learning algorithm are known
- Surrogate data sampled from the same distribution as the classifier's training data
- Classifier's feedback to label surrogate data

Experiments on PDF Malware Detection

• PDF: hierarchy of interconnected objects (keyword/value pairs)

13 0 obj << /Kids [1 0 R 11 0 R] /Type /Page ... >> end obj 17 0 obj << /Type /Encoding /Differences [0 /C0032] >> endobj

Features: keyword count			
/Туре	2		
/Page	1		
/Encoding	1		

Adversary's capability

- adding up to d_{max} objects to the PDF
- removing objects may compromise the PDF file (and embedded malware code)!

$$\min_{x'} g(x') - \lambda p(x' \mid y = -1)$$

s.t. $d(x, x') \le d_{\max}$
 $x \le x'$

ML Security, 2022 – B. Biggio – https://unica-mlsec.github.io/mlsec

Experiments on PDF Malware Detection

- Dataset: 500 malware samples (Contagio), 500 benign (Internet)
 - 5-fold cross-validation
 - Targeted (surrogate) classifier trained on 500 (100) samples
- Evasion rate (FN) at FP=1% vs max. number of added keywords
 - Perfect knowledge (PK); Limited knowledge (LK)

ML Security, 2022 – B. Biggio – https://unica-mlsec.github.io/mlsec

Experiments on PDF Malware Detection SVM with RBF kernel, Neural Network

ML Security, 2022 – B. Biggio – https://unica-mlsec.github.io/mlsec

Experiments on Android Malware Detection

- Drebin: Arp et al., NDSS 2014
 - Android malware detection directly on the mobile phone
 - Linear SVM trained on features extracted from static code analysis

Feature sets					
manifest	$\begin{vmatrix} S_1 \\ S_2 \\ S_3 \\ S_4 \end{vmatrix}$	Hardware components Requested permissions Application components Filtered intents			
dexcode	$egin{array}{c c} S_5 \ S_6 \ S_7 \ S_8 \end{array}$	Restricted API calls Used permission Suspicious API calls Network addresses			

Experiments on Android Malware Detection

- Dataset (Drebin): 5,600 malware and 121,000 benign apps (TR: 30K, TS: 60K)
- Detection rate at FP=1% vs max. number of manipulated features (averaged on 10 runs)
 Perfect knowledge (PK) white-box attack; Limited knowledge (LK) black-box attack

Why Do Adversarial Attacks Transfer? (USENIX Sec. 2019)

- Transferability is the ability of an attack developed against a surrogate model to succeed also against a different target model
- In our paper, we show that transferability depends on
 - the vulnerability of the target model, and
 - the alignment of (poisoning/evasion) gradients between the target and the surrogate model

Take-home Messages

- Linear and non-linear supervised classifiers are vulnerable to wellcrafted evasion attacks
- Performance evaluation should be always performed as a function of the adversary's knowledge and capability via Security Evaluation Curves

Hands-on Demo

CO Open in Colab <u>https://github.com/unica-mlsec/mlsec/blob/main/notebooks/advx-challenge.ipynb</u>

Evasion of Multiclass Classifiers

Is Deep Learning Safe for Robot Vision?

- Evasion attacks against the iCub humanoid robot
 - Deep Neural Network used for visual object recognition

Deep Feature Extraction with Imagenet Deep Network

User Feedback used for Classifier Retraining

iCubWorld28 Data Set: Example Images

From Binary to Multiclass Evasion

- In multiclass problems, classification errors occur in different classes.
- Thus, the attacker may aim:
 - 1. to have a sample misclassified as any class different from the true class (error-generic attacks)
 - 2. to have a sample misclassified as a specific class (error-specific attacks)

Error-generic (Indiscriminate) Evasion

- Error-generic evasion
 - k is the true class (blue)
 - I is the competing (closest) class in feature space (red)

$$\Omega(\boldsymbol{x}) = f_k(\boldsymbol{x}) - \max_{l \neq k} f_l(\boldsymbol{x})$$

• The attack <u>minimizes</u> the objective to have the sample misclassified as the closest class (could be any!)

$$egin{array}{ll} \min & \Omega(oldsymbol{x}')\,, \ {
m s.t.} & d(oldsymbol{x},oldsymbol{x}') \leq d_{\max}\,, \ oldsymbol{x}_{
m lb} \preceq oldsymbol{x}' \preceq oldsymbol{x}_{
m ub}\,, \end{array}$$

Error-specific (Targeted) Evasion

- Error-specific evasion
 - k is the target class (green)
 - I is the competing class (initially, the **blue** class)

$$\Omega(\boldsymbol{x}) = f_k(\boldsymbol{x}) - \max_{l \neq k} f_l(\boldsymbol{x})$$

• The attack <u>maximizes</u> the objective to have the sample misclassified as the target class

$$\begin{array}{ll} \max_{\boldsymbol{x}'} & \Omega(\boldsymbol{x}') \,, \\ \text{s.t.} & d(\boldsymbol{x}, \boldsymbol{x}') \leq d_{\max} \,, \\ & \boldsymbol{x}_{\mathrm{lb}} \preceq \boldsymbol{x}' \preceq \boldsymbol{x}_{\mathrm{ub}} \,, \end{array}$$

Adversarial Examples – Gradient Computation

Gradient-based attacks

The gradient is computed with the chain rule

- the gradient of $f_i(\mathbf{z})$ can be computed if the chosen classifier is differentiable, and then
- be backpropagated through the DNN with automatic differentiation

Example of Adversarial Images against iCub

• An adversarial example from class *laundry-detergent*, modified by the proposed algorithm to be misclassified as *cup*

The Sticker Attack against iCub

Adversarial example generated by manipulating only a specific region, to simulate a sticker that could be applied to the real-world object.

This image is classified as cup.

Loss Functions for Targeted/Indiscriminate Attacks

- Using the same loss functions used to train ML models, denoted with L
 - and given an input sample x and its true class label y
- We can formalize/generalize adversarial attacks as:
 - $\max_{\delta} L(x + \delta, y, \theta) = \min_{\delta} -L(x + \delta, y, \theta)$, for indiscriminate attacks
 - $\min_{\delta} L(x + \delta, y_t, \theta)$, for targeted attacks, with $y_t \neq y$

The Effect of Different Norms

Constraints are Regularizers

Typically, (convex) ℓ_p norms are used as constraints/regularizers

 ℓ_p norms with $p \ge 1$, $\ell_p(\mathbf{x}) = \left(\sum_j |x_j|^p\right)^{1/p}$

Most popular examples

 $-\ell_0$ is not convex, and amounts to counting non-zero elements in x

$$- \ \ell_1 = |x_1| + |x_2| + \dots + |x_d|$$

$$- \ell_2 = x_1^2 + x_2^2 + \dots + x_d^2$$

$$-\ell_{\infty} = \max_{j} |x_{j}|$$

Sparsity

- ℓ_0 and ℓ_1 regularization enforce sparsity, i.e., many values in x will be set to zero
 - Why? The optimum is often found at one of the vertices!

- Sparsity helps automatically perform feature selection
- Features assigned $w_j = 0$ can be disregarded

Sparse vs Dense Attacks

Sparse Evasion Attacks (L1-norm constrained)

original sample

Dense Evasion Attacks (L2-norm constrained)

original sample

2014: Deep Learning Meets Adversarial Machine Learning

The Discovery of Adversarial Examples

Intriguing properties of neural networks

Christian Szegedy	Wojciech Zaremba	Ilya Sutskeve	r Joan Bruna	
Google Inc.	New York University	Google Inc.	New York University	
Dumitru Erhan	Ian Goodfel	low	Rob Fergus	
Google Inc.	University of Montreal		New York University	
			Facebook Inc.	

... we find that deep neural networks learn **input-output mappings** that are fairly **discontinuous** to a significant extent. We can cause the network to misclassify an image by applying a certain **hardly perceptible perturbation**, which is found by maximizing the network's prediction error ...
Adversarial Examples against Deep Neural Networks

- Szegedy et al. (2014) independently developed gradient-based attacks against DNNs
- They were investigating model interpretability, trying to understand at which point a DNN prediction changes
- They found that the **minimum perturbations required to trick DNNs were really small**, even imperceptible to humans

school bus (94%)

adversarial example

ostrich (97%)

Creation of Adversarial Examples

- Minimize $||r||_2$ subject to:
 - 1. f(x+r) = l2. $x + r \in [0, 1]^m$

The adversarial image x + r is visually hard to distinguish from xInformally speaking, the solution x + r is the closest image to x classified as l by f

The solution is approximated using using a box-constrained limited-memory BFGS

Minimum-norm vs Maximum-confidence Attacks

- Szegedy et al., ICLR 2014 aim to measure the minimum distance to evasion
 - Better suited to the analysis of adversarial robustness in the white-box case
- Biggio et al., ECML 2013 maximizes misclassification confidence within a given budget
 - The intuition was to craft attacks that are more difficult to detect, and to evade classifiers with higher probability also when knowledge of the boundary is not perfect (transfer attacks)

Adversary's goal. As suggested by Laskov and Kloft [17], the adversary's goal should be defined in terms of a utility (loss) function that the adversary seeks to maximize (minimize). In the evasion setting, the attacker's goal is to manipulate a single (without loss of generality, positive) sample that should be misclassified. Strictly speaking, it would suffice to find a sample \mathbf{x} such that $g(\mathbf{x}) < -\epsilon$ for any $\epsilon > 0$; *i.e.*, the attack sample only just crosses the decision boundary.² Such attacks, however, are easily thwarted by slightly adjusting the decision threshold. A better strategy for an attacker would thus be to create a sample that is misclassified with high confidence; *i.e.*, a sample minimizing the value of the classifier's discriminant function, $g(\mathbf{x})$, subject to some feasibility constraints.

Biggio, Roli et al., ECML PKDD 2013

Minimum-norm vs Maximum-confidence Attacks

Many Black Swans After 2014

- Several defenses have been proposed against adversarial examples, and more powerful attacks have been developed to show that they are ineffective.
 - Remember the arms race?
- Most of these attacks are modifications to the optimization problems reported for evasion attacks / adversarial examples, using different gradient-based solution algorithms, initializations and stopping conditions.

Timeline of Learning Security

Biggio and Roli, **Wild Patterns**: *Ten Years After The Rise of Adversarial Machine Learning*, Pattern Recognition, 2018

Attack Algorithms: A Unifying View

General Categorization

Pareto Frontier

Trade-off between misclassification confidence and perturbation size

Pareto-optimal solutions with different trade-offs are found along the blue curve (Pareto frontier)

Hard-constraint: Maximum-confidence Attacks

Minimize loss to cause misclassifiation (FGSM, PGD)

The perturbation is checked as hard constraint, bound on maximum manipulation

min $L(\boldsymbol{x} + \boldsymbol{\delta}, y; \boldsymbol{\theta})$, s.t. $\|\boldsymbol{\delta}\|_p \leq \epsilon$

Hard-constraint: Minimum-norm Attacks

Minimize perturbation w.r.t. Lp norm

Score is used only as a constraint, not optimized

Hard to solve directly – normally a soft-constraint is used instead

 $\min \|\boldsymbol{\delta}\|_p$
s.t. $L(\boldsymbol{x} + \boldsymbol{\delta}, y; \boldsymbol{\theta}) < t$

Soft-constraint: Trade-off Solution

All constraints are imposed as quantities modulated by coefficients, behaving as regularizers

Modulating the multipliers shifts the solution towards trade-off between score and distance

 $\min L(\boldsymbol{x} + \boldsymbol{\delta}, \boldsymbol{y}; \boldsymbol{\theta}) + c \|\boldsymbol{\delta}\|_p$

Generalized Gradient-Descent Attack Algorithm

Input : x, the initial point; y, the true class of the initial point; n, the number of iterations; α , the learning rate; f, the target model; Δ , the considered region. **Output :** x^* , the solution found by the algorithm 1 $x_0 \leftarrow \texttt{initialize}(x)$ ▷ Initialize starting point 2 $\hat{\boldsymbol{\theta}} \leftarrow \operatorname{approximation}(\boldsymbol{\theta})$ ▷ Approximate model parameters $\boldsymbol{\delta}_0 \leftarrow \boldsymbol{0}$ \triangleright Initial δ 4 for $i \in [1, n]$ do 5 | $\boldsymbol{\delta}' \leftarrow \boldsymbol{\delta}_i - \alpha \nabla_{\boldsymbol{x}_i} L(\boldsymbol{x}_0 + \boldsymbol{\delta}_i, y; \hat{\boldsymbol{\theta}})$ ▷ Compute optimizer step $\boldsymbol{\delta} \quad \boldsymbol{\delta}_{i+1} \leftarrow \texttt{apply-constraints}(\boldsymbol{x}_0, \boldsymbol{\delta}', \Delta)$ ▷ Apply constraints (if needed) 7 $\boldsymbol{\delta}^{\star} \leftarrow \texttt{best}(\boldsymbol{\delta}_0,...,\boldsymbol{\delta}_n)$ > Choose best perturbation 8 return δ^*

Maximum-confidence Attacks

Fast Gradient Sign Method (2015)

- Perturbed image obtained as: $x^* = x + \epsilon \operatorname{sign}(\nabla L(x, y; \theta))$
- Why?
 - $\max_{\|\boldsymbol{\delta}\|_{\infty} \leq \epsilon} L(\boldsymbol{x} + \boldsymbol{\delta}, \boldsymbol{y}; \boldsymbol{\theta}) \approx \text{ (linear approximation)}$ $\max_{\|\boldsymbol{\delta}\|_{\infty} \leq \epsilon} L(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta}) + \boldsymbol{\delta}^{\mathrm{T}} \nabla L(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta}) =$ $L(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta}) + \max_{\|\boldsymbol{\delta}\|_{\infty} \leq \epsilon} \boldsymbol{\delta}^{\mathrm{T}} \boldsymbol{g}$
- The solution is to set $\delta^* = \epsilon \operatorname{sign}(g)$
- Loss function at δ^* (optimum): $L(x, y; \theta) + \epsilon ||g||_1$
 - (cf. dual norm and steepest gradient descent)

Why Are Attacks Effective / Imperceptible against DNNs?

- Let's pretend that a deep network behaves in a linear way...
- Under this linearity assumption, the output of the net to the adversarial input $\tilde{x} = x + \delta$ is $\mathbf{w}^{T} \tilde{x} = \mathbf{w}^{T} x + \mathbf{w}^{T} \delta$
- The key concept is that if the dimensionality of the input x is very high and the vector of the adversarial perturbation δ is aligned with the "classifier" (its weight vector w), then many infinitesimal changes to the input add up to one large change to the output.

52

Fast Gradient Method (FGM): Extension to Other Norms

Projected Gradient Descent (2018)

- Also known as Basic Iterative Method (BIM)
- PGD is just the iterative version of FGM
- Number of iterations and step size need to be fixed a priori

Madry et al. Towards deep learning models resistant to adversarial attacks, ICLR 2018 Kurakin et al., Adversarial Examples in the Physical World, ICLR-W 2017

AutoPGD (2020)

• It dynamically halves the step size while optimizing the attack, if no improvement in the loss function is observed

Algorithm 1 APGD 1: Input: $f, S, x^{(0)}, \eta, N_{\text{iter}}, W = \{w_0, \dots, w_n\}$ 2: Output: x_{\max} , f_{\max} 3: $x^{(1)} \leftarrow P_{\mathcal{S}} \left(x^{(0)} + \eta \nabla f(x^{(0)}) \right)$ 4: $f_{\max} \leftarrow \max\{f(x^{(0)}), f(x^{(1)})\}$ 5: $x_{\max} \leftarrow x^{(0)}$ if $f_{\max} \equiv f(x^{(0)})$ else $x_{\max} \leftarrow x^{(1)}$ 6: for k = 1 to $N_{\text{iter}} - 1$ do 7: $z^{(k+1)} \leftarrow P_{\mathcal{S}} \left(x^{(k)} + \eta \nabla f(x^{(k)}) \right)$ 8: $x^{(k+1)} \leftarrow P_{\mathcal{S}} \left(x^{(k)} + \alpha (z^{(k+1)} - x^{(k)}) \right)$ $+(1-\alpha)(x^{(k)}-x^{(k-1)})$ if $f(x^{(k+1)}) > f_{\max}$ then 9: $x_{\max} \leftarrow x^{(k+1)}$ and $f_{\max} \leftarrow f(x^{(k+1)})$ 10: end if 11: if $k \in W$ then 12: 13: if Condition 1 or Condition 2 then $\eta \leftarrow \eta/2$ and $x^{(k+1)} \leftarrow x_{\max}$ 14: 15: end if end if 16: 17: end for

AutoPGD (2020)

• AutoPGD-CE uses the cross-entropy loss

$$\operatorname{CE}(x,y) = -\log p_y = -z_y + \log \left(\sum_{j=1}^{K} e^{z_j}\right)$$

AutoPGD-DLR uses a novel scale-invariant loss: Difference of Logits Ratio (DLR)

$$DLR(x,y) = -\frac{z_y - \max_{i \neq y} z_i}{z_{\pi_1} - z_{\pi_3}}$$

ML Security, 2022 – B. Biggio – https://unica-mlsec.github.io/mlsec

Minimum-norm Attacks

Adversarial Examples against DNNs (2014)

• Szegedy et al. formalized the problem as

$$\min_{\boldsymbol{\delta}} ||\boldsymbol{\delta}||_2$$

s.t. $f(\boldsymbol{x} + \boldsymbol{\delta}) = y_t \qquad (y_t \neq y)$
 $\mathbf{x} + \boldsymbol{\delta} \in [0, 1]^d$

• Relaxation to use L-BFGS-B: L-BFGS-B: https://en.wikipedia.org/wiki/Limited-memory_BFGS

 $\min_{\boldsymbol{x}+\boldsymbol{\delta}\in[0,1]^{\mathrm{d}}} c \cdot ||\boldsymbol{\delta}||_{2} + L(\boldsymbol{x}+\boldsymbol{\delta},\boldsymbol{y}_{t},\boldsymbol{\theta})$

- where they find the minimum c>0 that achieves misclassification (via line search)
- $L(\mathbf{x} + \boldsymbol{\delta}, y_t; \boldsymbol{\theta})$ is the cross-entropy loss

DeepFool (2016)

- Idea: closed-form solution assuming a linear classifier, then iterate
 - For L₂, binary classifier: $\mathbf{x}^{\star} = \mathbf{x} \frac{f(\mathbf{x})}{||\mathbf{w}||}\mathbf{w}$

Algorithm 1 DeepFool for binary classifiers

- 1: input: Image x, classifier f.
- 2: **output:** Perturbation \hat{r} .
- 3: Initialize $x_0 \leftarrow x, i \leftarrow 0$.
- 4: while $\operatorname{sign}(f(\boldsymbol{x}_i)) = \operatorname{sign}(f(\boldsymbol{x}_0))$ do 5: $\boldsymbol{r}_i \leftarrow -\frac{f(\boldsymbol{x}_i)}{\|\nabla f(\boldsymbol{x}_i)\|_2^2} \nabla f(\boldsymbol{x}_i),$ 6: $\boldsymbol{x}_{i+1} \leftarrow \boldsymbol{x}_i + \boldsymbol{r}_i,$ 7: $i \leftarrow i+1.$
- 8: end while
- 9: return $\hat{r} = \sum_i r_i$.

59

DeepFool (2016)

 In the multi-class case, the (signed) L_p distance to the boundary B is estimated as:

 $d(\mathbf{x}, B) = \frac{f_k(\mathbf{x}) - f_y(\mathbf{x})}{\left\| \nabla f_k(\mathbf{x}) - \nabla f_y(\mathbf{x}) \right\|_q}$

• As in the binary case, the algorithm iterates to refine the initial guess, until a misclassification is achieved

Algorithm 2 DeepFool: multi-class case 1: input: Image x, classifier f. 2: output: Perturbation \hat{r} . 3: 4: Initialize $x_0 \leftarrow x, i \leftarrow 0$. 5: while $\hat{k}(\boldsymbol{x}_i) = \hat{k}(\boldsymbol{x}_0)$ do for $k \neq \hat{k}(\boldsymbol{x}_0)$ do 6: 7: $\boldsymbol{w}_k' \leftarrow \nabla f_k(\boldsymbol{x}_i) - \nabla f_{\hat{k}(\boldsymbol{x}_0)}(\boldsymbol{x}_i)$ 8: $f'_k \leftarrow f_k(\boldsymbol{x}_i) - f_{\hat{k}(\boldsymbol{x}_0)}(\boldsymbol{x}_i)$ end for 9: $\hat{l} \leftarrow \arg\min_{k \neq \hat{k}(\boldsymbol{x}_0)} \frac{|f'_k|}{\|\boldsymbol{w}'_k\|_2}$ 10: $oldsymbol{r}_i \leftarrow rac{|f_{\hat{l}}'|}{\|oldsymbol{w}_i'\|_2^2}oldsymbol{w}_{\hat{l}}'$ 11: $x_{i+1} \leftarrow x_i + r_i$ 12: $i \leftarrow i + 1$ 13: 14: end while 15: return $\hat{r} = \sum_{i} r_{i}$

60

Jacobian Saliency-Map Attack (2016)

- JSMA uses saliency maps (i.e., input gradients) to compute perturbations
- Given t as the target class, and i as an input feature
 - it only retains the feature values that would change the output if added (1st equation) or removed (2nd eq.)

$$S(\mathbf{X},t)[i] = \begin{cases} 0 \text{ if } \frac{\partial \mathbf{F}_t(\mathbf{X})}{\partial \mathbf{X}_i} < 0 \text{ or } \sum_{j \neq t} \frac{\partial \mathbf{F}_j(\mathbf{X})}{\partial \mathbf{X}_i} > 0 \\ \left(\frac{\partial \mathbf{F}_t(\mathbf{X})}{\partial \mathbf{X}_i}\right) \left| \sum_{j \neq t} \frac{\partial \mathbf{F}_j(\mathbf{X})}{\partial \mathbf{X}_i} \right| \text{ otherwise} \end{cases}$$

$$S(\mathbf{X},t)[i] = \begin{cases} 0 \text{ if } \frac{\partial \mathbf{F}_t(\mathbf{X})}{\partial \mathbf{X}_i} > 0 \text{ or } \sum_{j \neq t} \frac{\partial \mathbf{F}_j(\mathbf{X})}{\partial \mathbf{X}_i} < 0 \\ \left| \frac{\partial \mathbf{F}_t(\mathbf{X})}{\partial \mathbf{X}_i} \right| \left(\sum_{j \neq t} \frac{\partial \mathbf{F}_j(\mathbf{X})}{\partial \mathbf{X}_i} \right) \text{ otherwise} \end{cases}$$

Fig. 7: Saliency map of a 784-dimensional input to the LeNet architecture (cf. validation section). The 784 input dimensions are arranged to correspond to the 28x28 image pixel alignment. Large absolute values correspond to features with a significant impact on the output when perturbed.

Carlini-Wagner Attack (2017)

- Initially proposed to bypass one defensive mechanism (known as distillation)
 - Problem: cross-entropy loss exhibits vanishing gradients attacks do not work correctly!
 - Solution: to define the so-called logit loss $L(x, y, \theta) = \max_{k \neq y} f_k(x) f_y(x)$
 - Note: if L < 0, an adversarial example is found
- Goal: to find minimum-norm adversarial examples, using relaxation:

 $\min_{\boldsymbol{\delta}} ||\boldsymbol{\delta}||_2 + c \cdot \max(L(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\theta}), -\kappa)$

- s.t. $\mathbf{x} + \boldsymbol{\delta} \in [0,1]^d$
- -c > 0 is again chosen via line search
- $\kappa \ge 0$ can be set to achieve misclassification with a non-zero confidence in the target class
- The box constraint is also replaced via a change of variables (no constraints at all)
- **Solver:** The Adam algorithm is used to solve the unconstrained optimization, even though tuning *c* is computationally costly (requires re-running the attack many times)

Adam: <u>https://d2l.ai/chapter_optimization/adam.html</u>

Carlini-Wagner Attack (2017)

Brendel-Bethge Attack (2019)

• Idea:

- to initialize the attack from an adversarial point
- to find boundary between x and the init point (via line search)
- to try following the boundary to minimize the perturbation size

Fast Adaptive Boundary (FAB) Attack (2020)

- FAB uses essentially the same approximation of DeepFool to estimate distance to boundary
- However
 - it improves the projection, also accounting for the presence of the box constraint
 - and uses momentum to accelerate convergence

Algorithm 1 FAB-attack **Input :** x_{orig} original original class, point, c $N_{\text{restarts}}, N_{\text{iter}}, \alpha_{\max}, \beta, \eta, \epsilon, p$ **Output :** x_{out} adversarial example $u \leftarrow +\infty$ for $j = 1, \ldots, N_{restarts}$ do if j = 1 then $x^{(0)} \leftarrow x_{\text{orig}}$; else $x^{(0)} \leftarrow$ randomly sampled s.th. $||x^{(0)} - x_{\text{orig}}||_{r} =$ $\min\{u,\epsilon\}/2$; for $i = 0, ..., N_{iter} - 1$ do $s \leftarrow \operatorname*{arg\,min}_{l \neq c} \frac{|f_l(x^{(i)}) - f_c(x^{(i)})|}{\left\| \nabla f_l(x^{(i)}) - \nabla f_c(x^{(i)}) \right\|_a}$ $\delta^{(i)} \leftarrow \operatorname{proj}_p(x^{(i)}, \pi_s, C)$ $\delta_{\text{orig}}^{(i)} \leftarrow \operatorname{proj}_p(x_{\text{orig}}, \pi_s, C)$ compute α as in Equation (9) $x^{(i+1)} \leftarrow \operatorname{proj}_C \left((1-\alpha) \left(x^{(i)} + \eta \delta^{(i)} \right) \right)$ $+ \alpha (x_{\text{orig}} + \eta \delta_{\text{orig}}^{(i)}) \Big)$ if $x^{(i+1)}$ is not classified as c then if $||x^{(i+1)} - x_{orig}||_p < u$ then $x_{\text{out}} \leftarrow x^{(i+1)}$ $u \leftarrow \|x^{(i+1)} - x_{\text{orig}}\|_{\infty}$ end $x^{(i+1)} \leftarrow (1-\beta)x_{\text{orig}} + \beta x^{(i+1)}$ end end end perform 3 steps of final search on x_{out} as in (13)

Decoupled Direction and Norm (DDN) Attack (2019)

- DDN works in two steps
 - it performs a PGD-step
 - it adjusts the maximum perturbation size
- It uses cosine annealing as a decay strategy for the step size
- Specialized to L_2 , but very fast and effective

Fast Minimum-Norm (FMN) Attacks (2021)

Biggio et al., 2013 Szegedy et al., 2014 Goodfellow et al., 2015 (FGSM) Papernot et al., 2015 (JSMA) Carlini & Wagner, 2017 (CW) Madry et al., 2017 (PGD)

Croce et al., FAB, AutoPGD ... Rony et al., DDN, ALMA, ... **Pintor et al., 2021 (FMN)**

FMN

Fast convergence to good local optima Works in different norms $(\ell_0, \ell_1, \ell_2, \ell_\infty)$

Easy tuning /robust to hyperparameter choice

Experimental Results: Query-distortion Curves

Benchmarks

Automation with AutoAttack (AA)

Automatic evaluation of a model by ensembling attacks:

- AutoPGD-CE
- AutoPGD-DLR
- FAB
- Square Attack (black-box)

(AA also plays with initialization, repetitions, etc.)

Latest development: Adaptive AutoAttack

- Yao et al., NeurIPS '21 (<u>https://arxiv.org/abs/2102.11860</u>)

Reliable Evaluation of Adversarial Robustness with an Ensemble of Diverse Parameter-free Attacks

Francesco Croce¹ Matthias Hein

Abstract

The field of defense strategies against adversarial attacks has significantly grown over the last years, but progress is hampered as the evaluation of adversarial defenses is often insufficient and thus gives a wrong impression of robustness. Many promising defenses could be broken later on, making it difficult to identify the state-of-the-art. Frequent pitfalls in the evaluation are improper tuning of hyperparameters of the attacks, gradient obfuscation or masking. In this paper we first propose two extensions of the PGD-attack overcoming failures due to suboptimal step size and problems of the objective function. We then combine our novel attacks with two complementary existing ones to form a parameter-free, computationally affordable and user-independent ensemble of attacks to test adversarial robustness. We apply our ensemble to over 50 models from papers published at recent top machine learning and computer vision venues. In all except one of the cases we achieve lower robust test accuracy than reported in these papers, often by more than 10%. identifying several broken defenses.

variations are using other losses (Zhang et al., 2019b) and boost robustness via generation of additional training data (Carmon et al., 2019; Alayrac et al., 2019) or pre-training (Hendrycks et al., 2019). Another line of work are provable defenses, either deterministic (Wong et al., 2018; Croce et al., 2019a; Mirman et al., 2018; Gowal et al., 2019, to based on randomized smoothing (Li et al., 2019; Lecuyer et al., 2019; Cohen et al., 2019). However, these are not yet competitive with the empirical robustness of adversarial training for datasets like CIFAR-10 with large perturbations.

Due to the many broken defenses, the field is currently in a state where it is very difficult to judge the value of a new defense without an independent test. This limits the progress as it is not clear how to distinguish bad from good ideas. A seminal work to mitigate this issue are the guidelines for assessing adversarial defenses by (Carlini et al., 2019). However, as we see in our experiments, even papers trying to follow these guidelines can fail in obtaining a proper evaluation. In our opinion the reason is that at the moment there is no protocol which works reliably and autonomously, and does not need the fine-tuning of parameters for every new defense. Such protocol is what we aim at in this work.

The most popular method to test adversarial robustness is the PGD (Projected Gradient Descent) attack (Madry et al.,

Current Benchmark for Vision Models: RobustBench

Public benchmark for defenses https://robustbench.github.io/

It uses AutoAttack, defenses are listed in leaderboard by results

All models are available and can be tested offline

A standardized benchmark for adversarial robustness

The goal of **RobustBench** is to systematically track the *real* progress in adversarial robustness. There are already more than 2000 papers on this topic, but it is still unclear which approaches really work and which only lead to overestimated robustness. We start from benchmarking common corruptions, $\ell_{\rm asc}$ and ℓ_2 -robustness since these are the most studied settings in the literature. We use AutoAttack, an ensemble of white-box and black-box attacks, to standardize the evaluation (for details see our paper) of the ℓ_p robustness and CIFAR-10-C for the evaluation of robustness to common corruptions. Additionally, we open source the RobustBench library that contains models used for the leaderboard to isagified robustness and CIFAR-10-C.

Current Benchmark for Vision Models: RobustBench

Pros

- First standardized
 benchmark
- Easy to use (AutoAttack provides a good combination of attacks)

Cons

- Evalutes RA at fixed
 perturbation budget
- Computationally demanding (ensembling four attacks)

RobustBench		Leaderboards	Paper	FAQ C	Contribute	e Model	Zoo 🚀
Available Leaderboards CIFAR-10 (ℓ_{∞}) CIFAR-10 (ℓ_{2}) CIFAR-10 (Corruptions) CIFAR-100 (ℓ_{∞}) CIFAR-100 (Corruptions) ImageNet (ℓ_{∞}) ImageNet (Corruptions: IN-C, IN-3DCC) Leaderboard: CIFAR-10, $\ell_{\infty} = 8/255$, untargeted attack							
Show 15 v entries	Standar d accurac Y	AutoAttack Bes robust ac accuracy ac	st known robust ccuracy	AA eval. potentially unreliable	Ex tr a da ta	Architectur	architectures, v Venue
1 Fixing Data Augmentation to Improve Adversarial Robustness 665.6% robust accuracy is due to the original evaluation (AutoAttack + MultiTargeted)	92.23%	66.58% (66.56%	×		WideResNet-70- 16	arXiv, Mar 2021
Improving Robustness using Generated Data 2 It uses additional 100M synthetic images in training, 66.10% robust accuracy is due to the original evaluation (AutoAttack + MultTargeted)	88.74%	66.11%	66.10%	×	×	WideResNet-70- 16	NeurIPS 2021
3 Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples 65.87% robust accuracy is due to the original evaluation (AutoAttack + MultiTargeted)	91.10%	65.88% (65.87%	×	V	WideResNet-70- 16	arXiv, Oct 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples

 Sven Gowal (Deepmind) et al., 2021 <u>https://arxiv.org/abs/2010.03593</u>

We discover that it is possible to train robust models that go well beyond state-of-the-art results by combining larger models, Swish/SiLU activations and model weight averaging.

Extracted from RobustBench: https://robustbench.github.io/

Attack Implementations

- Most popular Python libraries implementing attacks
 - we will use secml in this course

Physical Attacks: *EoT* and **Adversarial Patches**

Adversarial Examples in the Physical World

- Do adversarial images fool deep networks even when they operate in the physical world, for example, images are taken from a cell-phone camera?
 - Alexey Kurakin et al. (2016, 2017) explored the possibility of creating adversarial images for machine learning systems which operate in the physical world. They used images taken from a cell-phone camera as an input to an Inception v3 image classification neural network
 - They showed that in such a set-up, a significant fraction of adversarial images crafted using the original network are misclassified even when fed to the classifier through the camera

Adversarial Examples in the Physical World

Adversarial Examples in the Physical World

Robust Physical-World Attacks on Machine Learning Models Visit https://iotsecurity.eecs.umich.edu/#roadsigns for an FAQ

Ivan Evtimov¹, Kevin Eykholt², Earlence Fernandes¹, Tadayoshi Kohno¹, Bo Li⁴, Atul Prakash², Amir Rahmati³, and Dawn Song^{*4}

> ¹University of Washington ²University of Michigan Ann Arbor ³Stony Brook University ⁴University of California, Berkeley

How Are They Optimized?

- The constraint for the attacker here is to craft a perturbation which is **robust** to changes in *illumination*, pose, distance to the camera, etc.
 - How is this achieved?
- The previous examples all make use of the notion of **EoT:** Expectation over Transformations, originally proposed by Athalye et al., ICML 2018 https://arxiv.org/pdf/1707.07397.pdf
 - Main idea: to optimize the perturbation to be invariant to different image transformations

$$\underset{x'}{\arg \max} \quad \mathbb{E}_{t \sim T}[\log P(y_t | t(x'))]$$
subject to
$$\mathbb{E}_{t \sim T}[d(t(x'), t(x))] < \epsilon$$

$$x \in [0, 1]^d$$

ML Security, 2022 – B. Biggio – https://unica-mlsec.github.io/mlsec

Adversarial Patch

Figure 1: A real-world attack on VGG16, using a physical patch generated by the white-box ensemble method described in Section 3. When a photo of a tabletop with a banana and a notebook (top photograph) is passed through VGG16, the network reports class 'banana' with 97% confidence (top plot). If we physically place a sticker targeted to the class "toaster" on the table (bottom photograph), the photograph is classified as a toaster with 99% confidence (bottom plot). See the following video for a full demonstration: https://youtu.be/e9IAu41T9w8

ImageNet Patch

electric guitar

typewriter keyboard

sock

Lakeland terrier

cornet

banana

81

Universal Adversarial Perturbations (UAP)

- Same principle of EoT: optimizing the perturbation over different images
 - However, this attack just considers images from different classes (and not different views of the same object)

Black-box (Gradient-free) Evasion Attacks

Motivations

Model might be non-differentiable (e.g. Random Forest classifiers)

Target is unavailable, like "Machine Learning as a Service" (MLaaS), available only through APIs

No gradients can be computed in these scenarios, Black-box attacks are needed!

(1) Black-box Transfer Attacks

Attack surrogate classifier

Consider a close approximation of the real target model, by either training a new one on same or similar data, or use a pretrained model

Compute gradient attacks

The attacker chose a differentiable model, to maximize the easiness of computing attacks

Transfer the results

Try to evade the real target using the adversarial examples computed on the surrogate

Surrogate models

Competition between models

Training different surrogates and compute how they transfer "all vs all"

Different techniques have different results

The heatmap shows that different models behave differently when tested with attacks optimized on other models

DNN	LR Target M	SVM lachine Li	DT Parning T	kNN echnique	Ens.
11.75	42.89	82.16	82.95	41.65	31.92 -
0.82	12.22	8.85	89.29	3.31	5.11 -
2.51	36.56	100.0	80.03	5.19	15.67 -
6.31	91.64	91.43	87.42	11.29	44.14 -
38.27	23.02	64.32	79.31	8.36	20.72 -
		, , ,			20 10 10 10 10 10 10 10 10 10 10 10 10 10

Do Transfer Attacks Work?

Maximum confidence attacks might better transfer, but more perturbation is needed

Minimum distance attacks are likely to stop working because decision boundary is different

Quantifying Transferability through Metrics

$$T = \ell(y, \mathbf{x} + \hat{\mathbf{\delta}}, \mathbf{w}) \cong \ell(y, \mathbf{x}, \mathbf{w}) + \hat{\mathbf{\delta}}^\top \nabla_{\mathbf{x}} \ell(y, \mathbf{x}, \mathbf{w})$$

Main Insight: by looking at the size of gradients, the gradient alignment, and the variability of the loss function, it is possible to understand if a model will suffer from transfer attacks

Recap

Benefits

No white-box access to target model

Depending on the domain, data and similar pretrained model are already available

Issue: to build a good surrogate model

Training the surrogate might lead to training errors, and the attack might not transfer since the approximation is not good enough

Data might be unavailable as well

Might require the attacker to interact with the target to extract labels (to be used at training time)

(2) Black-box Query Attacks

No need for training a model from scratch

The attacker can query the target (that might be on a remote server), no need for looking for data, pretrained models, etc.

Optimize attack based on feedback

The attack is optimized based on the classifier's output/prediction

- Hard-label vs soft-label attacks

Main challenge: keeping a small number of queries to stay undetected

ZOO: Zeroth order attack

No surrogate model

Estimate Hessian (2° order derivative) in each direction, by querying the model locally and around a very small proximity by chosing random directions, no need to train surrogate

Sparse result

Attack only uses randomly picked directions to minimize both queries and perturbation size $\hat{g}_i \coloneqq \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_i} \approx \frac{f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x} - h\mathbf{e}_i)}{2h},$ $\hat{h}_i \coloneqq \frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x}_{ii}^2} \approx \frac{f(\mathbf{x} + h\mathbf{e}_i) - 2f(\mathbf{x}) + f(\mathbf{x} - h\mathbf{e}_i)}{h^2}.$

[Chen et al., ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models, AISec 2017]

Natural Evolutionary Strategies (NES)

- Assume Normally-distributed inputs
- Estimate **gradient** w.r.t. distribution parameters (mean, std)

$$egin{aligned} J(heta) &= \mathbb{E}_{ heta}[f(\mathbf{z})] = \int f(\mathbf{z}) \; \pi(\mathbf{z} \,|\, heta) \; d\mathbf{z} \ \nabla_{ heta} J(heta) &pprox rac{1}{\lambda} \sum_{k=1}^{\lambda} f(\mathbf{z}_k) \;
abla_{ heta} \log \pi(\mathbf{z}_k \,|\, heta). \end{aligned}$$

- Use the natural gradient instead of the plain gradient
 - **F** is the Fisher information matrix
 - Less dependent on the distribution choice (more robust/trustworthy direction)

 $\widetilde{\nabla}_{\theta} J = \mathbf{F}^{-1} \nabla_{\theta} J(\theta)$

Natural Evolutionary Strategies (NES)

Tested also against MLaaS

Effective in real case scenarios, attacking Google Cloud Vision

Genetic Algorithms

Evolving solutions

Sample N points, compute scores, retain best candidates. Follow "genetic evolution" until a suitable solution is found

No gradient estimation

No need for computing approximation of best direction, it is taken care of by the mixing of "genes"

Recap

Benefits

Bounded number of queries might already be enough for evasion

Ready to target real world targets as MLaaS

A lot of different methods to estimate directions

Issues

Decision are local, slower than normal gradient-based attack as it is reconstructing best direction from answers

The number of needed queries might still be enormous, depending on the robustness of the target

Countering Evasion Attacks

What is the rule? The rule is protect yourself at all times (from the movie "Million dollar baby", 2004)

Security Measures for Machine Learning

B. Biggio, F. Roli/Pattern Recognition 84 (2018) 317-331

Reactive Defenses

- 1. timely detection of attacks
- 2. frequent retraining
- 3. decision verification

Proactive Defenses

Security-by-Design Defenses against white-box attacks (no probing)

1. secure/robust learning

2. attack detection

Effect on decision boundaries: noise-specific margin, enclosure of legitimate training classes Security-by-Obscurity Defenses against gray-box and black-box attacks (probing)

- 1. information hiding, randomization
- 2. detection of probing attacks

Fig. 11. Schematic categorization of the defense techniques discussed in Section 5.

Wild patterns: Ten years after the rise of adversarial machine learning

A Challenging Problem!

• <u>https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html</u>

Security Measures against Evasion Attacks

- 1. Reduce sensitivity to input changes with **robust optimization**
 - Adversarial Training / Regularization

2. Introduce *rejection / detection* of adversarial examples

Countering Evasion: *Robust Optimization / Adversarial Training*

Robust Optimization via Adversarial Training (AT)

• Robust optimization (a.k.a. adversarial training)

$$\begin{array}{c} \min_{w} \max_{\substack{||\delta_i||_{\infty} \leq \epsilon}} \sum_{i} \ell(y_i, f_w(x_i + \delta_i)) \\ \uparrow \\ \text{bounded perturbation!} \end{array}$$

- Madry et al., ICLR 2018 (<u>https://arxiv.org/pdf/1706.06083.pdf</u>)
 - PGD-AT better than FGSM-AT but more computationally costly
 - Fast AT (NeurIPS 2020, https://arxiv.org/abs/2007.02617)

Robust Optimization via Regularization

• Robust optimization (a.k.a. adversarial training)

$$\min_{\substack{w \ ||\delta_i||_{\infty} \leq \epsilon}} \sum_{i} \ell(y_i, f_w(x_i + \delta_i))$$
f
bounded perturbation!

- Robustness and regularization (Xu et al., JMLR 2009)
 - under linearity of ℓ and f_w , equivalent to robust optimization

$$\min_{w} \sum_{i} \ell(y_{i}, f_{w}(\boldsymbol{x}_{i})) + \epsilon || \nabla_{\boldsymbol{x}} f ||_{1}$$

$$\uparrow$$

$$dual norm of the perturbation$$

$$|| \nabla_{\boldsymbol{x}} f ||_{1} = || w ||_{1}$$

Results on Adversarial Android Malware

- Infinity-norm regularization is the optimal regularizer against sparse evasion attacks
 - Sparse evasion attacks penalize $||\delta||_1$ promoting the manipulation of only few features

Adversarial Training and Regularization

- Adversarial training can also be seen as a form of regularization, which penalizes the (dual) norm of the input gradients $\epsilon ||\nabla_x \ell||_q$
- Known as double backprop or gradient/Jacobian regularization
 - see, e.g., Simon-Gabriel et al., Adversarial vulnerability of neural networks increases with input dimension, ArXiv 2018; and Lyu et al., A unified gradient regularization family for adversarial examples, ICDM 2015.

Take-home message: the net effect of these techniques is to make the prediction function of the classifier smoother (increasing the input margin)

Why Does Robust Optimization Work?

On Adversarial Training...

Adversarial Classification

Nilesh Dalvi Pedro Domingos Mausam Sumit Sanghai Deepak Verma Department of Computer Science and Engineering University of Washington, Seattle Seattle, WA 98195-2350, U.S.A. {nilesh.pedrod,mausam,sanghai,deepak}@cs.washington.edu

2012

2004

Static Prediction Games for Adversarial Learning Problems

Michael Brückner Department of Computer Science University of Potsdam August-Bebel-Str. 89 14482 Potsdam, Germany

Christian Kanzow

Institute of Mathematics University of Würzburg Emil-Fischer-Str. 30 97074 Würzburg, Germany

Tobias Scheffer

Department of Computer Science University of Potsdam August-Bebel-Str. 89 14482 Potsdam, Germany MIBRUECK@CS.UNI-POTSDAM.DE

KANZOW@MATHEMATIK.UNI-WUERZBURG.DE

SCHEFFER@CS.UNI-POTSDAM.DE

2006

Nightmare at Test Time: Robust Learning by Feature Deletion

Amir Globerson GAMIR@CSAIL.MIT.EDU Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA Sam Roweis ROWEIS@CS.TORONTO.EDU Department of Computer Science, University of Toronto, Canada

Universität Potsdam

Michael Brückner

Prediction Games

Machine Learning in the Presence of an Adversary

Countering Evasion: Detecting & Rejecting Adversarial Examples

Detecting and Rejecting Adversarial Examples

- Adversarial examples tend to occur in blind spots
 - Regions far from training data that are anyway assigned to 'legitimate' classes

rejection of adversarial examples through enclosing of legitimate classes
Detecting & Rejecting Adversarial Examples

Why Rejection (in Representation Space) Is Not Enough?

Deep Neural Rejection against Adversarial Examples

DNR against Physical Attacks

Robust Learning with Domain Knowledge

$$\min_{\mathbf{f}} = \frac{1}{n} \sum_{i=1}^{l} L_y(\mathbf{f}(\mathbf{x}_i), \mathbf{y}_i) + \sum_{j=1}^{l+u} \sum_{h=1}^{m} \lambda_m \cdot L_\phi(\phi_h(\mathbf{f}(\mathbf{x}_j))) + \lambda \|\mathbf{f}\|$$

Certified Defenses

Formal Verification via Abstract Interpretation

Interval Bound Propagation (IBP)

Al2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation, IEEE S&P 2018 Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, Martin Vechev

Randomized Smoothing

- Formal guarantee on adversarial robustness (a.k.a. provable robustness)
 - classification is consistent within I2 perturbations of size less than a given radius

$$g(x) = \underset{c \in \mathcal{Y}}{\arg \max} \mathbb{P}(f(x + \varepsilon) = c)$$
(1)
where $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$

Theorem 1. Let $f : \mathbb{R}^d \to \mathcal{Y}$ be any deterministic or random function, and let $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$. Let g be defined as in (1). Suppose $c_A \in \mathcal{Y}$ and $\underline{p_A}, \overline{p_B} \in [0, 1]$ satisfy:

$$\mathbb{P}(f(x+\varepsilon) = c_A) \ge \underline{p_A} \ge \overline{p_B} \ge \max_{c \neq c_A} \mathbb{P}(f(x+\varepsilon) = c) \quad (2)$$

Then $g(x + \delta) = c_A$ for all $\|\delta\|_2 < R$, where

$$R = \frac{\sigma}{2} (\Phi^{-1}(\underline{p_A}) - \Phi^{-1}(\overline{p_B}))$$
(3)

Certified Defenses against Patch Attacks

Figure 1: **Overview of double-masking defense.** The defense applies masks to the input image and evaluates model prediction on every masked image. *Clean image:* all one-mask predictions typically agree on the correct label ("dog"); our defense outputs the agreed prediction. *Adversarial image:* one-mask predictions have a disagreement; we aim to recover the benign prediction. We first categorize all one-mask predictions into the *majority prediction* (the one with the highest prediction label occurrence; the label "cat" in this example) and *disagreer predictions* (the ones that disagree with the majority; the labels "dog" and "fox"). For every mask that leads to a disagreer prediction, we add a set of second masks and evaluate two-mask predictions. If all two-mask predictions agree with this one-mask disagreer, we *output* its prediction label (the label "dog"; illustrated in the upper row of the second-round masking); otherwise, we *discard* it (the label "fox"; in the lower row of the second-round masking).

Certified Defenses against Patch Attacks

- PatchCleanser (PC) can certify classification up to a given patch size and for a fraction of the input samples
 - Robust accuracy here is certified. It means that no attack can decrease it further, but also that empirical attacks may perform worse...
 - i.e., a gradient-based attack may actually turn out to find a higher robustness!

Dataset	ImageNette [15]					ImageNet [12]					CIFAR-10 [25]					
Patch size	1% pixels 2% pixels			pixels	3%]	pixels	1% pixels		2% pixels		3% pixels		0.4% pixels		2.4% pixels	
Accuracy (%)	clean	robust	clean	robust	clean	robust	clean	robust	clean	robust	clean	robust	clean	robust	clean	robust
PC-ResNet PC-ViT PC-MLP	99.6 99.6 99.4	96.4 97.5 96.8	99.6 99.6 99.3	94.4 96.4 95.3	99.5 99.5 99.4	93.5 95.3 94.6	81.7 84.1 79.6	58.4 66.4 58.4	81.6 83.9 79.4	53.0 62.1 53.8	81.4 83.8 79.3	50.0 59.0 50.7	98.0 99.0 97.4	88.5 94.3 86.1	97.8 98.7 97.0	78.8 89.1 78.0
IBP [7]					CO	mputation	ally infeas	ible					65.8	51.9	47.8	30.8
CBN [67]	94.9	74.6	94.9	60.9	94.9	45.9	49.5	13.4	49.5	7.1	49.5	3.1	84.2	44.2	84.2	9.3
DS [27]	92.1	82.3	92.1	79.1	92.1	75.7	44.4	17.7	44.4	14.0	44.4	11.2	83.9	68.9	83.9	56.2
PG-BN [61]	95.2	89.0	95.0	86.7	94.8	83.0	55.1	32.3	54.6	26.0	54.1	19.7	84.5	63.8	83.9	47.3
PG-DS [61]	92.3	83.1	92.1	79.9	92.1	76.8	44.1	19.7	43.6	15.7	43.0	12.5	84.7	69.2	84.6	57.7
BagCert [‡] [35]	-		-	-	-	-	45.3	27.8	45.3	22.7	45.3	18.0	86.0	72.9	86.0	60.0

Table 2: Clean accuracy and certified robust accuracy for different defenses and datasets[†]

[†] We mark the best result for PatchCleanser models and the best result for prior works in bold.

[‡] The BagCert numbers are provided by the authors [35] through personal communication since the source code is unavailable; results for ImageNette are not provided.

Shall We Trust Empirical Evaluations?

Ineffective Defenses: Obfuscated Gradients

- Carlini & Wagner (SP' 17), Athalye et al. (ICML '18), Tramer et al. (NeurIPS '20) have shown that
 - some recently-proposed defenses rely on obfuscated / masked gradients...
 - ... and they can be circumvented

Backward Pass Differentiable Approximation (BPDA)

- If gradients of a DNN are "unavailable" at some representation level g(x), e.g. when inputs are discretized or non-differentiable transformations are applied, one can approximate g(x) in the backward pass with a smoother function which approximates it
 - e.g. Distillation, Thermometer Encoding, JPEG compression

$$\nabla_x f(g(x))|_{x=\hat{x}} \approx \nabla_x f(x)|_{x=g(\hat{x})}$$

• Trivial case: just replace the gradient of g(x) with ones during the backward pass

Detecting Unrealiable Evaluations

Detect and Avoid Flawed Evaluations

- Problem: formal evaluations do not scale, adversarial robustness evaluated mostly empirically, via gradient-based attacks
- Gradient-based attacks can fail: many flawed evaluations have been reported, with defenses easily broken by adjusting/fixing the attack algorithms

Detect and Avoid Flawed Evaluations

- This work identifies the main causes of **failure**, devises quantitative **indicators** for them, and the corresponding **mitigation** strategies
 - The process can be automated by following a specific evaluation protocol!

Issues with Existing Libraries / Tools (2022)

- Flawed attack implementations
 - Cleverhans (PyTorch, Tensorflow, JAX),
 - ART (NumPy, PyTorch, and Tensorflow),
 - Foolbox (EagerPy, which wraps the implementation of NumPy, PyTorch, Tensorflow, and JAX)
 - Torchattacks (PyTorch)

Library	Version	GitHub 🖈			
Cleverhans	4.0.0	5.6k			
ART	1.11.0	3.1k			
Foolbox	3.3.3	2.3k			
Torchattacks	3.2.6	984			

RobustBench/AutoAttack has a flag to detect unreliable evaluations

Are Indistinguishable Perturbations a Real Security Threat?

~

Is This a Real Security Threat?

- Adversarial examples can exist in the physical world, we can fabricate concrete adversarial objects (glasses, road signs, etc.)
- But the effectiveness of attacks carried out by adversarial objects is still to be investigated with large-scale experiments in realistic security scenarios
- Gilmer et al. (2018) have recently discussed the realism of security threat caused by adversarial examples, pointing out that it should be carefully investigated
 - Are indistinguishable adversarial examples a real security threat?
 - For which real security scenarios adversarial examples are the best attack vector? Better than attacking components outside the machine learning component

- ...

Indistinguishable Adversarial Examples

- Minimize $||r||_2$ subject to:
 - 1. f(x+r) = l $f(x) \neq l$ 2. $x + r \in [0, 1]^m$

The adversarial image x + r is visually hard to distinguish from x

...There is a **torrent of work** that views increased robustness to **restricted perturbations** as making these models **more secure**. While not all of this work requires completely indistinguishable modications, many of the papers focus on specifically small modications, and the language in many suggests or implies that the **degree of perceptibility** of the **perturbations** is an important aspect of their **security risk**...

ML Security, 2022 - B. Biggio - https://unica-mlsec.github.io/mlsec

Indistinguishable Adversarial Examples

- The attacker can benefit by minimal perturbation of a legitimate input; e.g., she could use the attack for a longer period of time before it is detected
- But is *minimal perturbation* a necessary constraint for the attacker?

Indistinguishable Adversarial Examples

• Is *minimal perturbation* a necessary constraint for the attacker?

Attacks with Content Preservation

There are well known security applications where minimal perturbations and indistinguishability of adversarial inputs are not required at all...

Are Indistinguishable Perturbations a Real Security Threat?

...At the time of writing, we were **unable** to find a **compelling example** that **required indistinguishability**...

To have the largest impact, we should both recast future adversarial example research as a **contribution** to **core machine learning** and develop new abstractions that capture **realistic threat models**.

133

Battista Biggio battista.biggio@unica.it @biggiobattista

Thanks!

If you know the enemy and know yourself, you need not fear the result of a hundred battles **Sun Tzu, The art of war, 500 BC**