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Attacks against Machine Learning

Attacker’s Goal

Misclassifications that do Misclassifications that Querying strategies that reveal
not compromise normal compromise normal confidential information on the
system operation system operation learning model or its users
Attacker’s Capability Integrity Availability Privacy / Confidentiality
Test data Evasion (a.k.a. adversarial Sponge Attacks Model extraction / stealing
examples) Model inversion (hill climbing)

Membership inference

Training data Backdoor/targeted poisoning (to  Indiscriminate (DoS) -
allow subsequent intrusions) — poisoning (to maximize
e.g., backdoors or neural trojans  test error)

Sponge Poisoning

Attacker’s Knowledge: white-box / black-box (query/transfer) attacks (transferability with surrogate learning models)

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/misec Biggio and Roli, WWi/d Patterns, Patt. Rec. 2018, Best paper award and PR medal 2021



Evasion Attacks against Machine Learning at Test Time

Biggio, Corona, Maiorca, Nelson, Srndic, Laskov, Giacinto, Roli, ECML-PKDD 2013

*  Goal: maximum-confidence evasion +1, malicious
+ Knowledge: perfect (white-box attack)

» Attack strategy:

f(x) =sign(g(x)) ={

-1, legitimate

min g(x")
x/
s.tlx — x|, < dpmax

* Non-linear, constrained optimization

— Projected gradient descent: approximate
solution for smooth functions

« Gradients of g(x) can be analytically
computed in many cases
— SVMs, Neural networks

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec



Computing Descent Directions

Support vector machines

g(x) = Eaiyik(x’ x,)+b, Vg(x)= zaiyin(x’xi)

RBF kernel gradient: | VA(x,x ) =-2y exp{—y lx—x \\2}(x -x))

Neural networks

-1

8(x)= 1+exp(_iwk5k(x))
0g(x) _ _ < )
= g()(1-8(x)) Y w8, (0)(1-8,(x)) v,
f k=1

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec Biggio et al., Evasion Attacks Against Machine Learning af Test Time2 ECML 2013



An Example on Handwritten Digits

* Nonlinear SYM (RBF kernel) to discriminate between ‘3" and '7’
» Features: gray-level pixel values (28 x 28 image = 784 features)

After attack
Before attack (3 vs 7) (misclassified as 7)

Few modifications are
enough to evade detection!

5
10
15
20
25

5 10 15 20 25 5 10 15 20 25
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Problem: Do We Always Evade with Gradient Descent?

* No! Look at the rightmost plot:
— Many red samples do not cross the boundary ...
— ... evenif they are able to get sufficiently far from the red class

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec Biggio et al., Evasion Attacks Against Machine Learning af Test Time2 ECML 2013 6



Solution 1: Kernel Density Estimation (KDE)

« Add KDE of the target class y, to the objective function min g(x") — Ap(x'|y:)
— to attract the attack samples towards the target class X! ,
— Trade-off parameter A: evasion rate vs perturbation size S.t. ||x — X ”p < dmax

9(x) - A p(x]yc=-1), A=20

“4 | Some attack samples may not evade the classifier!

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec Biggio et al., Evasion Attacks Against Machine Learning at Test Time2 ECML 2013



Gradient Descent with KDE (GD-KDE)

Input: x°, the initial attack point; ¢, the step size; A, the trade-off parameter; € > 0 a
small constant.
Output: x*, the final attack point.

1: m« 0.

2: repeat

3 m+m+1
Set VF(x™ 1) to a unit vector aligned with Vg(x™ '}
x™ ¢ x" L —tVF(x™ 1)
if d(x™,x”) > dmax then

Project x™ onto the boundary of the feasible region.

8 end if

9: until F (x™) - F (x™') <e
10: return: x* =x™

- . 2 Ilx —x, II?
KDE gradient (RBF kernel): Vp(xly" =-1)= _n_hzilyf=—lexp(_—)(x - xl.)

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec Biggio et al., Evasion Attacks Against Machine Learning af Test Time2 ECML 2013 8



Example on Handwritten Digits

Before attack (3 vs 7) After attack, g(x)=0 After attack, last iter. a(x)
2
> 1
Without mimicry | 10 \
A=0 15 0
20 1
25
-2
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 0 5000
dmax
Before attack (3 vs 7) After attack, g(x)=0 After attack, last iter. a(x)
2
5
1
- . . 10 \
With mimicry
A=10 I 0
25
-2
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 0 5000

dmax
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Solution 2: Adversarial Initialization

*  We do not actually need density estimation
— Smarter idea: to inifialize the attack from a point in the target class!

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec Zhang, Biggio et al., Adversarial Feature Selection against Evasion Attacks, IEEE TCYB 2015 10



From White-box to Black-box Attacks



Bounding the Adversary’s Knowledge

« Only feature representation and (possibly) learning algorithm are known
« Surrogate data sampled from the same distribution as the classifier’s training data
« Classifier's feedback to label surrogate data

p——— This is the same underlying idea
- behind substitute models and black-
\ box attacks (fransferability)
f(x) -~ [N. Papernot et al., IEEE Euro S&P '16;
\ N. Papernot et al., ASIACCS'17]
\
Send queries /
/ Get labels  ~ e N
surrogate / Learn f; (X) \
training data > surrogate
classifier \
~

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec Biggio et al., Evasion Attacks Against Machine Learning af Test Time2 ECML 2013 12



Experiments on PDF Malware Detection

« PDF: hierarchy of inferconnected objects (keyword/value pairs)

13 0 obj . K ’
<< /Kids [10R110R] eatures: keyword count

@ /Type /Page o 5

... >>end obj
: 17 0 obj /Page 1
il << /Type /Encoding /Encoding 1
/Differences [ 0 /C0032 | >>
endobj
« Adversary’s capability i | |
. min - Ap(x'ly=-1
— adding up to dmax Objects to the PDF X' g(x ) P( y )
— removing objects may St d(x,x') < dmax

compromise the PDF file
(and embedded malware code)!

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec Biggio et al., Evasion Attacks Against Machine Learning at Test Time2 ECML 2013 13



Experiments on PDF Malware Detection
Linear SVM

+ Dataset: 500 malware samples (Contagio), 500 benign (Internet)

— 5-fold cross-validation
— Targeted (surrogate) classifier trained on 500 (100) samples

« Evasionrate (FN) at FP=1% vs max. number of added keywords
— Perfect knowledge (PK); Limited knowledge (LK)

Without mimicry With mimicry
A=0 SVM (Linear), A=0 A = 500 SVM (linear) — C=1, A=500
1 I I_——:['—'I_—i_-;——*__:% 1 : T i
08 SO — S o8
R SV [P e e e  0s
p : : : : -z
L : : : : cole
0.4/, 1 SRR e R R 04
0.2f /o S s co[—PK@E=n] 02
: : |- --k(C=n) || : : :
O i i 1 J O i i i J
20 30 40 50 0 10 20 30 40 50
dmax dmaX

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec Biggio et al., Evasion Attacks Against Machine Learning at Test Time2 ECML 2013 14



Experiments on PDF Malware Detection
SVM with RBF kernel, Neural Network

SVM (RBF), A=0 SVM (RBF) — C=1, y=1, A=500

g AR i i i Tp A_—* : -
} Ak } } } ’- z z z
0.8 e s D S : 0.8f S T /’ """"""" D ERRERERREE R :
4 : : : : : : : :
4 : : : : 4 : : : :
0.6F T oL R e S Y| S T T TR RN :
Z 4 : : : : Z : : : :
L 4 : : : : L : : : :
0.4/~ PAa SRR Do B AR : 0.4f S e D R :
I | | | | /S 5 5 | 5
0-2"“/'/ """"" ““““““““ """"""" """ — PK (C=1) 0.2, % """""""" """"""" """"""" —PK

4 : : : - - -LK(C=1) |: Al : : : ---LK
0 0
0 10 20 30 40 50 0 10 20 30 40 50
dmax dmax

max max

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec Biggio et al., Evasion Attacks Against Machine Learning at Test Time2 ECML 2013



Experiments on Android Malware Detection

» Drebin: Arp et al., NDSS 2014

— Android malware detection directly on the
mobile phone

— Linear SVM trained on features extracted from
static code analysis

0 permission: : SEND_SMS g
1 permission: :READ_SMS 2 X
1 api_call: :getDeviceld } g
: .. - 5
Android app (apk) 0 api_call::getSubscriberId

Feature sets

S1  Hardware components
manifest Sa Requgstgd permissions

S3  Application components

Ss4  Filtered intents

S5 Restricted API calls

Se¢  Used permission
dexcode S7  Suspicious API calls

Ss  Network addresses

X3

J(x)

Classifier p—»

malware

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec Demontis, Biggio et al., Yes, Machine Learning Can Be More Secure! ..., IEEE TDSC 2017



Experiments on Android Malware Detection

* Dataset (Drebin): 5,600 malware and 121,000 benign apps (TR: 30K, TS: 60K)

» Detection rate at FP=1% vs max. number of manipulated features (averaged on 10 runs)
— Perfect knowledge (PK) white-box attack; Limited knowledge (LK) black-box attack

PK
15 50 100 200 1 5 15 50 100 200
Number of modified features Number of modified features

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec Demontis, Biggio et al., Yes, Machine Learning Can Be More Secure! ..., IEEE TDSC 2017



Why Do Adversarial Attacks Transfer? (USENIX Sec. 2019)

« Transferability is the ability of an attack developed against a surrogate model to
succeed also against a different target model

* Inour paper, we show that transferability depends on
— the vulnerability of the target model, and
— the alignment of (poisoning/evasion) gradients between the target and the surrogate model

P: 0.45, p-val: < 1e-3 P: 0.31, p-val: 0.01
K: 0.27, p-val: < le-2 a0 K: 0.19, p-val: 0.03
0.40 ® Py § 1.4 'y
0.8 1 )
— ® [ ] a
2 = X
£ 0.35 o [ ] 5 1.2
2 L] s iib P & ’ [ g i ..
g x 2 067 2 °
o X = i ‘ ()
x 0.30 g X4 B 10 oo“?. o s
o & %" s o o [
5 S 0.4+ ° % 8- S %
% 0.25 m— SVM = ° 8 0
3 m—— |ogistic «< P N ‘ 2 ] % e :
F ] m— ridge 0.2 4 & ‘ ] 0.6 ' '.. :
0.20 1, ° o &
* s S\VVM-RBF } 2 ‘ ®
. . $041 . . .
10° 10! 0.2 0.4 0.6 0.8 o 0.2 04 0.6 0.8
Size of input gradients (S) Gradient alignment (R) Gradient alignment (R)

ML Security, 2022 - B. Biggio - https://unica-mlsec.github.io/misec Demontis et al., Why Do Adversarial Attacks Transfer? ... USENIX 2019



Take-home Messages

« Linear and non-linear supervised
classifiers are vulnerable to well-
crafted evasion attacks

« Performance evaluation should
be always performed as a
function of the adversary’s
knowledge and capability via
Security Evaluation Curves

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec
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Hands-on Demo

oo BN NNeGEN  https://github.com/unica-mlsec/mlsec/blob/main/notebooks/advx-challenge.ipynb



https://github.com/unica-mlsec/mlsec/blob/main/notebooks/advx-challenge.ipynb

Evasion of Multiclass Classifiers
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Is Deep Learning Safe for Robot Vision?

« Evasion attacks against the iCub humanoid robot
— Deep Neural Network used for visual object recognition

detergent

sponge

[ 192 cup

128x128x3 W o . B A/ =
; . o N \ AW AN : ate
cropped image " e Y\ % —=— |\ ‘; ' vV YV N £ P
L 5 | ::7 7‘ [ 3 ’; & o= 10 hs [dense’| |denfel |
4 s ‘ | )
‘} \ | - " wmax tol ks Learning and Classification
Image Acquisition 2\ Sirae 2 8 T o = b
a . Vol I
(Object Detection) 3 — fe7
Deep Feature Extraction with Imagenet Deep Network User Feedback used for Classifier Retraining

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec Melis, Biggio et al., Is Deep Learning Safe for Roboft Vision2 ICCVW VIiPAR 2017 22



iCubWorld28 Data Set: Example Images

Laundry Plate  Dishwashing Sponge
detergent detergent

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec

Sprayer
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From Binary to Multiclass Evasion

« In multiclass problems, classification errors occur in different classes.

« Thus, the attacker may aim:

1. to have a sample misclassified as any class different from the true class (error-generic attacks)
2. to have a sample misclassified as a specific class (error-specific attacks)

Error-generic (indiscriminate) attacks

V2

-
mOo

Oo
— any class

detergent

dish

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec

Error-specific (targeted) attacks

p7
b
-%oo/

sponge

detergent

dish

Melis, Biggio et al., Is Deep Learning Safe for Robot Visiong ICCVW ViPAR 2017 24



Error-generic (Indiscriminate) Evasion

» Error-generic evasion
— kis the true class (blue) Q(w) = fk (il:) — max fl (CI))
— lis the competing (closest) class in feature space (red) I#k

+ The attack minimizes the objective to have the sample misclassified as the closest class
(could be any!)

min Q(x'),

s.t. d(z,z") < dpax ,

T 2z <z,

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec Melis, Biggio et al., Is Deep Learning Safe for Roboft Vision2 ICCVW VIiPAR 2017 25



Error-specific (Targeted) Evasion

» Error-specific evasion
— kis the target class (green) Q(w) = fk (il:) — Imax fl (CE)
— lis the competing class (initially, the blue class) I#k

+ The attack maximizes the objective to have the sample misclassified as the farget class

M Q(a),

S.t. d(w, ZE,) < dmax ’

T Xz <z,

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec Melis, Biggio et al., Is Deep Learning Safe for Roboft Vision2 ICCVW VIiPAR 2017 26



Adversarial Examples - Gradient Computation

Gradient-based attacks

The gradient is computed
with the chain rule

the gradient of f;(z) can
be computed if the
chosen classifier is
differentiable, and then
be backpropagated
through the DNN with
automatic differentiation

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec

et
55
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2 i fl
13 13 13
55 X
l — K3 3 13 n
\ ' — ! 3 N2 L.\ ; 13 dense en > fz
¢ ) | 5 \ | / 3 ¥
) { 3 L - } ’] : .
aTH\ y ] JT \
Ty 157 192 128 2048 2048
13 \ o 128 — s
: 55 27 f = = -
v h \ \ | \ < i o 3
224 ‘ 3 ‘ r 3\l 'sI ‘
\y ; [\he WX | v - >
|\ I Kb 3 | ) 137 13 dense | |denfe|
B | 3] F
{ ) . J - —
Wi 192 192 128 Max | > f
2048 2048 c
224 Max Max pooling
Stride, 128 -
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3 a8

27



Example of Adversarial Images against iCub

290.03 - cup3

« An adversarial example from class laundry-detergent, modified by the proposed

algorithm to be misclassified as cup

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec

[Melis, Biggio et al., Is Deep Learning Safe for Robot Vision? ICCVW ViPAR 2017]
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The Sticker Attack against iCub

222588 - cup3

Adversarial example generated by
manipulating only a specific region,
to simulate a sticker that could be
applied to the real-world object.

This image is classified as cup.

0 50 100 150 200

ML Security, 2022 - B. Biggio - https://unica-misec.github.io/mlisec [Melis, Biggio et al., Is Deep Learning Safe for Robot Vision? ICCVW ViPAR 2017] 29



Loss Functions for Targeted/Indiscriminate Attacks

« Using the same loss functions used to train ML models, denoted with L
— and given an input sample x and its true class label y

«  We can formalize/generalize adversarial attacks as:
- mng(x +46,y,0) = msin —L(x + 48,y,0), forindiscriminate attacks

- main L(x + 6,y 0), for targeted attacks, with y, # y

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec
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The Effect of Different Norms

31



Constraints are Regularizers

Typically, (convex) £, norms are used as constraints/regularizers

£, norms with p > 1, £,(x) = (Zj|xj|p)1/p

Most popular examples
— £y is not convex, and amounts to counting non-zero elements in x
= 1= x| + x| + o+ xql
— Oy =x% +x5+..+x3

— b = m]ax|xj|

p=035 p=1 p=2 p=3

p =100

@R

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec

32



Sparsity

« £, and ¢, regularization enforce sparsity, i.e., many values in x will be set to zero
— Why? The optimum is often found at one of the vertices!

« Sparsity helps automatically
perform feature selection

 Features assigned w; =0
can be disregarded

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec

W, .

D

N

- L1

=
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Sparse vs Dense Attacks

Sparse Evasion Attacks (L1-norm constrained)

original sample

5 10 15 20 25 5 10 15 20 25

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec

Dense Evasion Attacks (L2-norm constrained)

original sample

5 10 15 20 25 5 10 15 20 25
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2014: Deep Learning Meets
Adversarial Machine Learning

35



The Discovery of Adversarial Examples

Intriguing properties of neural networks

Christian Szegedy Wojciech Zaremba Ilya Sutskever Joan Bruna
Google Inc. New York University Google Inc. New York University
Dumitru Erhan Ian Goodfellow Rob Fergus
Google Inc. University of Montreal New York University

Facebook Inc.

... we find that deep neural networks learn input-output mappings
that are fairly discontinuous to a significant extent. We can cause
the network to misclassify an image by applying a certain hardly
perceptible perturbation, which is found by maximizing the
network’s prediction error ...

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec Szegedy, Goodfellow et al., Intriguing Properties of NNs, ICLR 2014
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Adversarial Examples against Deep Neural Networks

adversarial

perturbation adversari
& ‘ !

« Szegedy et al. (2014)
independently developed
gradient-based attacks
against DNNs

vk

&
e

« They were investigating
model interpretability, trying
fo understand at which point
a DNN prediction changes

« They found that the minimum
perturbations required to trick
DNNs were really small, even
imperceptible to humans

school bus (94%) ostrich (97%)

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec Szegedy, Goodfellow et al., Intriguing Properties of NNs, ICLR 2014 37



Creation of Adversarial Examples

* Minimize ||r||y subject to: The adversarial image x + r is visually
hard to distinguish from x
l. flz+7r)=1 %

Informally speaking, the solution x + ris
2. z+rel0,1™ the closest image to x classified as / by f

The solution is approximated using using a box-constrained limited-memory BFGS

School Bus (x) Adversarial Noise (r) Ostrich

Struthio Camelus

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec Szegedy, Goodfellow et al., Intriguing Properties of NNs, ICLR 2014
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Minimum-norm vs Maximum-confidence Attacks

« Szegedy et al., ICLR 2014 aim to measure the minimum distance to evasion
— Better suited to the analysis of adversarial robustness in the white-box case

« Biggio et al., ECML 2013 maximizes misclassification confidence within a given budget

— The intuition was to craft attacks that are more difficult to detect, and to evade classifiers with
higher probability also when knowledge of the boundary is not perfect (transfer attacks)

Adversary’s goal. As suggested by Laskov and Kloft [17], the adversary’s
goal should be defined in terms of a utility (loss) function that the adversary
seeks to maximize (minimize). In the evasion setting, the attacker’s goal is to
manipulate a single (without loss of generality, positive) sample that should be
misclassified. Strictly speaking, it would suffice to find a sample x such that
g(x) < —e for any € > 0; i.e., the attack sample only just crosses the decision
boundary.? Such attacks, however, are easily thwarted by slightly adjusting the
decision threshold. A better strategy for an attacker would thus be to create a
sample that is misclassified with high confidence; i.e., a sample minimizing the
value of the classifier’s discriminant function, g(x), subject to some feasibility

constraints.
Biggio, Roli et al., ECML PKDD 2013

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec
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Minimum-norm vs Maximum-confidence Attacks

initial / source example
minimum-distance black-box adversarial example

minimum-distance white-box adversarial example

maximum-confidence black-box adversarial example

> e oe

maximum-confidence white-box adversarial example

__________ surrogate classifier f (x) used to craft black-box adversarial examples

target classifier f(x) used to craft white-box adversarial examples

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec Demontis et al., Why do adversarial attacks transfere USENIX 2019
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Many Black Swans After 2014

« Several defenses have been proposed against adversarial
examples, and more powerful attacks have been
developed to show that they are ineffective.

— Remember the arms race?

« Most of these attacks are modifications to the optimization
problems reported for evasion attacks / adversarial
examples, using different gradient-based solution
algorithms, initializations and stopping conditions.

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec Search hitps://arxiv.org with keywords "adversarial examples” 4]


https://arxiv.org/

Timeline of Learning Security

Biggio and Roli, Wild Patterns: Ten Years
After The Rise of Adversarial Machine
Learning, Pattern Recognition, 2018

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec

Legend

@ Pioneering work on adversarial machine learning
@ Work on security evaluation of learning algorithms
@ Work on evasion attacks (a.k.a. adversarial examples)

@ ... in malware detection (PDF / Android)

2014: Szegedy et al., ICLR
Independent discovery of (gradient-
based) minimum-distance adversarial
examples against deep nets; earlier
implementation of adversarial training

2015: Goodfellow et al., ICLR
Maximin formulation of adversarial
training, with adversarial examples

generated iteratively in the inner loop

2016: Kurakin et al.
Basic iterative attack with projected
gradient to generate adversarial examples

2016: Papernot et al., IEEE S&P
Framework for security evalution of
deep nets

2016: Papernot et al., Euro S&P
Distillation defense (gradient masking)

g
2017: Papernot et al., ASIACCS @
Black-box evasion attacks with

substitute models (breaks distillation

with transfer attacks on a smoother
surrogate classifier)

2017: Carlini & Wagner, IEEE S&P
Breaks again distillation with
maximum-confidence evasion attacks
(rather than using minimum-distance
adversarial examples)

2017: Grosse et al., ESORICS
Adversarial examples for
malware detection

2018: Madry etal., ICLR

Improves the basic iterative attack from

Kurakin et al. by adding noise before

running the attack; first successful use of |
adversarial training to generalize across
many attack algorithms

5 (2) iterative attacks

©

2004-2005: pioneering work Main contributions:
Dalvi et al., KDD 2004 - minimum-distance evasion of linear classifiers
Lowd & Meek, KDD 2005 - notion of adversary-aware classifiers

Main contributions:
- first consolidated view of the adversarial ML problem
- attack taxonomy

- exemplary attacks against some learning algorithms

2006-2010: Barreno, Nelson,
Rubinstein, Joseph, Tygar

The Security of Machine Learning
(and references therein)

2006: Globerson & Roweis, ICML Main contributions:

2009: Kolcz et al., CEAS - evasion attacks against linear classifiers in spam filtering
2010: Biggio et al., IMLC

Main contributions:

- evasion of linear PDF malware detectors

- claims nonlinear classifiers can be more secure

2013: Srndic & Laskov, NDSS

2013: Biggio et al., ECML-PKDD - demonstrated vulnerability of nonlinear algorithms
to gradient-based evasion attacks, also under limited knowledge

Main contributions:
gradi (against SVMs and neural nets)

(2) projected gradient descent / iterative attack (also on discrete features from malware data)
(3) transfer attack with surrogate/substitute model

(4) maximum-confidence evasion (rather than minimum-distance evasion)

Main contributions:
- framework for security evaluation of learning algorithms
- attacker’s model in terms of goal, knowledge, capability

2014: Biggio et al., IEEE TKDE

2014: Srndic & Laskov, IEEE S&P
used Biggio et al."s ECML-PKDD ‘13 gradient-based evasion attack to demonstrate
vulnerability of nonlinear PDF malware detectors

2017: Demontis et al., IEEE TDSC
Yes, Machine Learning Can Be
More Secure! A Case Study on

Main contributions:
Secure SVM against adversarial examples in malware
detection

Android Malware Detection
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Attack Algorithms: A Unifying View




General Categorization

main[L(x +6,y;0),[6],]

Minimize loss to cause
misclassification

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec

Minimize perturbation size
(measured with Lp norm)

44



L(x+6,y;0)

Pareto Frontier

A

151l

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec

Trade-off between misclassification
confidence and perturbation size

Pareto-optimal solutions with different
trade-offs are found along the blue
curve (Pareto frontier)
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L(x+6,y;0)

Hard-constraint: Maximum-confidence Atacks

A

Minimize loss to cause
misclassifiation (FGSM, PGD)

The perturbation is checked as
hard constraint, bound on
maximum manipulation

min L(x + §,y;0),

151l

€

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec

> st |6, < €
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- L(x+4,y;0)

Hard-constraint: Minimum-norm Aftacks

A

151l

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec

Minimize perturbation w.r.t. Lp norm

Score is used only as a constraint, not
optimized

Hard to solve directly — normally a
soff-constraint is used instead

min [|5],
s.t. L(x+6,y;0)<t
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L(x+6,y;0)

Soft-constraint: Trade-off Solution

A

151l

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec

All constraints are imposed as

quantities modulated by coefficients,

behaving as regularizers

Modulating the multipliers shifts the
solution tfowards trade-off between
score and distance

min L(x + 6,y; 8) + c|l5]l,
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Generalized Gradient-Descent Attack Algorithm

Input :x, the initial point; y, the true class of the initial point; n, the number of iterations; c,
the learning rate; f, the target model; A, the considered region.
Output : =, the solution found by the algorithm

1 &y < initialize(x) > Initialize starting point
2 0 < approximation(6) > Approximate model parameters
3000 > Initial §
4 fori € [1,n] do

5 6 < 6; —aVy,L(xo + 8;,v;0) > Compute optimizer step
6 0,11 «+ apply-constraints(zg,d’,A) > Apply constraints (if needed)
7 8" + best(do,...,0n) > Choose best perturbation
8 return 6~

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec
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Maximum-confidence Attacks
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Fast Gradient Sign Method (2015)

« Perturbed image obtained as: x* = x + e sign(VL(x, y; 6))

Loo-norm constraint

« Whye

- ||§I|l|a)i L(x+6,y;0) = (linear approximation)
0 SE

max L(x,y;0) + 8T VL(x,y;0) =

[16]leo <€

L(x,y;0)+ max 61 g

160 <€

« The solution is to set 8" = € sign(g)

« Loss function at 6 (optimum): L(x,y; 0) + € |lgll,
— (cf. dual norm and steepest gradient descent)

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec Goodfellow et al., Explaining and Harnessing Adversarial Examples ICLR 2015 51



Why Are Attacks Effective / Imperceptible against DNNs?

« Let's pretend that a deep network behaves in a linear way...

« Under this linearity assumption, the output of the net to the adversarial input
¥X=x+8 is wix=wlx+wlé

+ The key concept is that if the dimensionality of the input x is very high and the vector of

the adversarial perturbation § is aligned with the “classifier” (its weight vector w), then
many infinitesimal changes to the input add up to one large change to the output.

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec Goodfellow et al., Explaining and Harnessing Adversarial Examples ICLR 2015
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Fast Gradient Method (FGM): Extension to Other Norms

L1-norm constraint L2-norm constraint Loo-norm constraint

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec Goodfellow et al., Explaining and Harnessing Adversarial Examples ICLR 2015 53



Projected Gradient Descent (2018)

* Also known as Basic
Iterative Method (BIM)

« PGD is just the iterative
version of FGM

« Number of iterations and
step size need to be fixed a
priori

6.42
5.73
5.05
4.37
3.69
-3.01
-2.32
-1.64
-0.96
-0.28
- —0.40
-—1.09
-—=1.77
-2.45
-3.13
-3.81
—-4.50
-5.18
-5.86
—-6.54

Madry et al. Towards deep learning models resistant to adversarial attacks, ICLR 2018

ML Security, 2022 - B. Biggio - https://unica-misec.github.io/misec Kurakin et al., Adversarial Examples in the Physical World, ICLR-W 2017
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AutoPGD (2020)

Algorithm 1 APGD

« |t dynamically halves the step size while
optimizing the attack, if no improvement in the
loss function is observed

(Madry et al., 2018)
MNIST - € = 0.3 CIFAR-10 - € = 8/255

robust accuracy

4
200 400 600 800 1000 0 200 400 600 800 1000

iterations iterations 15:

16:
17:

1:

9:
10:
11:
12:
13:
3.6 14:

Input: f, S, 29, n, Nier, W = f Wy W
Output: Zy,x, fmax

1)  Ps (z + 9V f(z(?))

frnax <= max{f(z?), f(zM)}

Tmax — O if Fonnx = f(a:(o)) else Ty — W
for kK = 1 to Niye—1 do

z*+D)  pg (m<k> + a2+ _ k)

+(1 - a)(@® — x(k_l)))

if f(z*+1D) > fo., then

Tmax < ‘T(]H_l) and fmax = f(x(k+1))
end if
if £ € W then

if Condition 1 or Condition 2 then

n < n/2and 2D — zo.

end if

end if
end for

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec Croce et al., Reliable Evaluation of Adversarial Robustness ..., ICML 2020
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AutoPGD (2020)

+ AuUtoPGD-CE uses the cross-entropy loss

K
CE(z,y) = —logp, = —2, +log (Z ezj)
j=1

*  AutoPGD-DLR uses a novel scale-invariant loss: Difference of Logits Ratio (DLR)

Zy — Max z;
1Y

DLR(z,y) = — .

2 3

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec Croce et al., Reliable Evaluation of Adversarial Robustness ..., ICML 2020 56



Minimum-norm Attacks




Adversarial Examples against DNNs (2014)

« Szegedy et al. formalized the problem as

min
in 11811,

st fx+8) =y O:#Yy)
x+ 8 €[0,1]4

« Relaxation to use L-BFGS-B:
L-BFGS-B: https://en.wikipedia.org/wiki/Limited-memory BFGS

min c-||8]|, +L(x+8,y:,0)

x+6€[0,1]d

— where they find the minimum c>0 that
achieves misclassification (via line search)

— L(x+ 48,y 0) is the cross-entropy loss

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec

Szegedy et al., Intriguing Properties of Neural Networks, ICLR 2014
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DeepFool (2016)

« Idea: closed-form solution assuming a linear Algorithm 1 DeepFool for binary classifiers

classifier, then iterate input: Image x, classifier f.
output: Perturbation 7.

Initialize &y < @, 7 < 0.

while sign(f (z;)) = sign(f ( 0)) do
T & — _V%ﬁvf wz
ZTip1 < T + 714,
141+ 1.

end while

retarn 7 = ). ;.

— For L,, binary classifier: x* = x — ﬂ‘(;rl)lw

e >L e

|f (%)]

Iwll

Distance of x to the hyperplane:

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec Moosavi-Dezfooli et al., DeepFool: ..., CVPR 2016



DeepFool (2016)

* Inthe multi-class case, the (signed) L,

distance to the boundary B is
estimated as:

Fe@)—fy ()
[VFkG-vi, @,

d(x,B) =

« Asinthe binary case, the algorithm
iterates to refine the initial guess, until
a misclassification is achieved

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec

Algorithm 2 DeepFool: multi-class

case

1: input: Image x, classifier f.
2: output: Perturbation 7.

:1:0) (a:z)

3:
4: Initialige xo  x, 72 < 0.
5: while k(azl) s k(mo) do
6: for k # k(xo) do
7: wfc — ka(.’lti) — foc(
8: fe < fe(zs) — f}}(mo)(a’i)
9: end for 7l
2 . fr
10: |« arg ming ) —Ilw,’tllz
. o
T &
12: Lit1 < XTi + 75
13: 1 1+1
14: end while

15: return 7 = ). 7;

Moosavi-Dezfooli et al

.. DeepFool: ..., CVPR 2016
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Jacobian Saliency-Map Attack (2016)

« JSMA uses saliency maps (i.e., input gradients) to 1.
compute perturbations

« Givent as the target class, and i as an input feature

— it only retains the feature values that would change the .
output if added (1% equation) or removed (29 eq.)

0if 2K coor 7, 24X >0

0 X
S0l = aFt(X) ., %y O X) | otherwise
J#t aX
Fig. 7: Saliency map of a 784-dimensional input to the LeNet
architecture (cf. validation section). The 784 input dimensions
if 6Ft—(x) > 0 or Z . (X) <0 are arranged to correspond to the 28x28 image pixel alignment.
S(X,t)[i] = oF (39())( 5F ()Jg)ét 6X Large absolute values correspond to features with a significant
ort\ ) e ALY 1 impact on the output when perturbed.
‘ X, [ (Z izt oX, ) otherwise p utput when pe

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec Papernot et al., The limitations of deep learning in adversarial settings, Euro S&P 2016 61



Carlini-Wagner Attack (2017)

Initially proposed to bypass one defensive mechanism (known as distillation)
— Problem: cross-entropy loss exhibits vanishing gradients - attacks do not work correctly!
— Solution: to define the so-called logit loss L(x,y,0) = f}gj;(fk(x) —fy (x)

» Note:if L <0, an adversarial example is found

Godal: to find minimum-norm adversarial examples, using relaxation:
msin ||6]], + ¢+ max(L(x,y, @), —k)
s.t. x+6¢€[0,1]¢
— ¢ >0 is again chosen via line search

— k =0 can be set to achieve misclassification with a non-zero confidence in the target class
— The box constraint is also replaced via a change of variables (no constraints at all)

Solver: The Adam algorithm is used to solve the unconstrained optimization, even
though tuning c is computationally costly (requires re-running the attack many times)

— Adam: https://d2l.ci/chapter_optimization/adam.html

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec Carlini and Wagner, Towards Evaluating the Robustness of Neural Networks, S&P 2017
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Carlini-Wagner Attack (2017)

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec Carlini and Wagner, Towards Evaluating the Robustness of Neural Networks, S&P 2017 63



Brendel-Bethge Attack (2019)

 l|dea:

— ftoinitialize the attack from an adversarial point
— to find boundary between x and the init point (via line search)
— to try following the boundary to minimize the perturbation size

Multi-step view Single-step view

standard gradient-based methods our method @)
cat X Find optimal step k-1— k that

(1) minimizes distance to clean image
(2) stays within trust region
(3) stays within pixel bounds

by / k-1 (4) stays on decision boundary

Q

3 4

g @ adversarial [ o

g 4 image

& 1 n > @

starting >
point A A (1)
clean image dog A
pixel value #2 pixel value #2 pixel value #2
ML Security, 2022 - B. Biggio — https://unica-misec.github.io/misec Brendel et al., Accurate, Reliable and Fast robustness Evaluation, NeurlPS 2019
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Fast Adaptive Boundary (FAB) Attack (2020)

Algorithm 1 FAB-attack

* FAB uses essentially the same approximation of Bl il ki e Bl
DeepFool to estimate distance to boundary Output : 7, adversarial example
U < +00

forj = 17 L | Nrestar’s do
if j = 1 then 200 x5
i However else (¥ < randomly sampled s.th. H:v(o) — ccm-ng =

— it improves the projection, also accounting for the st T
presence of the box constraint

=) — fo (D
— and uses momentum to accelerate convergence

S ¢— arg min
l#c

) projp(z(i),ws,C)
6§:i)g A projp(morig» Tsy C)

compute « as in Equation (9)

20+ proj, ((1 —a) (z(i) + né(i))

fi
|V f1(a) =V fe(z),

+ 0(Zorig + 775((,;),;))
if z(t1) is not classified as c then
if ||w(i+1) - z,,,,-ng < u then
Tout z(i+1)
u e [[@HD — zon,
end
2D (1 — B)Zgg + Bz+D
end
end

end
perform 3 steps of final search on zoy as in (13)

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec Croce & Hein, Minimally distorted Adversarial Examples with ..., ICML 2020 65



Decoupled Direction and Norm (DDN) Attack (2019)

« DDN works in two steps
— it performs a PGD-step

— it adjusts the maximum
perturbation size

* |t uses cosine annealing as a
decay strategy for the step size

« Specialized to L,, but very fast
and effective

(a) &, not adversarial (b) ), adversarial

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec Rony et al., Decoupling Direction and Norm ..., CVPR 2019 66



Fast Minimum-Norm (FMN) Attacks (2021)

Biggio et al., 2013

Szegedy et al., 2014
Goodfellow et al., 2015 (FGSM)
Papernot et al., 2015 (JSMA)
Carlini & Wagner, 2017 (CW)
Madry et al., 2017 (PGD)

Croce et al., FAB, AutoPGD ...

Rony et al., DDN, ALMA, ... 29
Pintor et al., 2021 (FMN) 0)

D FMN

Fast convergence to good local optima

Works in different norms (£, 1, %5, £ )

Easy tuning /robust to hyperparameter choice

(2) &-step

€k & €x—1 o

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec Pintor, Brendel, Roli, Biggio, Fast minimum-norm adversarial attacks..., NeurlPS 2021
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Experimental Results: Query-distortion Curves

Lo 141 by
200
— BB
Ours
100 1
80 1
]
& 60+
MNIST g
S 40
B
challenge | &
20 1
10 1
8_ T T T T T T T T T T T T T T T T
100 10! 102 10° 100 10! 10? 10° 100 10! 102 10° 100 101 10? 10°
Number of queries
Lo
0.8
—— BB 500 0.6 1
Ours
1000 0.4
500
® 100
8 0.2
CIFAR g 50 1
Z 100
challenge | & 011
50 1 0.08
101 0.06
5
10 1
100 10! 102 10° 100 101 102 10° 10° 10! 102 10° 100 101 10? 10°

Number of queries

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec Pintor, Brendel, Roli, Biggio, Fast minimum-norm adversarial attacks..., NeurlPS 2021
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Automation with AutoAttack (AA)

Automatic evaluation of a model by ensembling
attacks:

- AutoPGD-CE

- AutoPGD-DLR

- FAB

- Square Attack (black-box)

(AA also plays with initialization, repetitions, etc.)

Latest development: Adaptive AutoAttack
- Yoo et al., NeurlPS '21 (https://arxiv.org/abs/2102.11860)

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec

Reliable Evaluation of Adversarial Robustness with an Ensemble of Diverse
Parameter-free Attacks

Francesco Croce! Matthias Hein !

Abstract

The field of defense strategies against adversarial
attacks has significantly grown over the last years,
but progress is hampered as the evaluation of ad-
versarial defenses is often insufficient and thus
gives a wrong impression of robustness. Many
promising defenses could be broken later on, mak-
ing it difficult to identify the state-of-the-art. Fre-
quent pitfalls in the evaluation are improper tun-
ing of hyperparameters of the attacks, gradient
obfuscation or masking. In this paper we first
propose two extensions of the PGD-attack over-
coming failures due to suboptimal step size and
problems of the objective function. We then com-
bine our novel attacks with two complementary

variations are using other losses (Zhang et al., 2019b) and
boost robustness via generation of additional training data
(Carmon et al., 2019; Alayrac et al., 2019) or pre-training
(Hendrycks et al., 2019). Another line of work are provable
defenses, either deterministic (Wong et al., 2018; Croce
et al., 2019a; Mirman et al., 2018; Gowal et al., 2019) or
based on randomized smoothing (Li et al., 2019; Lecuyer
et al., 2019; Cohen et al., 2019). However, these are not
yet competitive with the empirical robustness of adversarial
training for datasets like CIFAR-10 with large perturbations.

Due to the many broken defenses, the field is currently in
a state where it is very difficult to judge the value of a new
defense without an independent test. This limits the progress
as it is not clear how to distinguish bad from good ideas.
A seminal work to mitigate this issue are the guidelines

existing ones to form a par: free, puta-
tionally affordable and user-independent ensem-
ble of attacks to test adversarial robustness. We
apply our ensemble to over 50 models from pa-
pers published at recent top machine learning and
computer vision venues. In all except one of the
cases we achieve lower robust test accuracy than
reported in these papers, often by more than 10%,
identifying several broken defenses.

for ing adversarial deft by (Carlini et al., 2019).
However, as we see in our experiments, even papers trying
to follow these guidelines can fail in obtaining a proper
evaluation. In our opinion the reason is that at the moment
there is no protocol which works reliably and autonomously,
and does not need the fine-tuning of parameters for every
new defense. Such protocol is what we aim at in this work.

The most popular method to test adversarial robustness is
the PGD (Projected Gradient Descent) attack (Madry et al.,

Croce et al., Reliable Evaluation of Adversarial Robustness ..., ICML 2020
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Current Benchmark for Vision Models: RobustBench

Public benchmark for defenses
hTTDS ://rObUSTbenC h ,Cli'l'hU b ,iO/ A standardized benchmark for adversarial robustness

The goal of RobustBench is to systematically track the real progress in adversarial robustness. There are already ! on this topic, but it is still unclear which
approaches really work and which only lead to i ess. We start from benchmarking common corruptions, £4,- and £,-robustness since these are the most
studied settings in the literature. We use 1ck, an ensemble of white-box and black-box attacks, to standardize the evaluation (for details see ) of the £,
robustness and CIFAR-10-C for the evaluation of robustness to common corruptions. Additionally, we open source the that contains models used for the

I T US es AU TOATTO C k, d efe n S es O re leaderboard to facilitate their usage for downstream applications.
|iSTed i n |eO d erboo rd by reSU I TS Up-to-date leaderboard based ]  Unified access to 60+ state-of-the-art

on 90+ models —J1 robust models via Model Zoo

Model Zoo Analysis

.
All models are available and can - | " el
Check out the ) lels and our R Check out I with a detailed analysis.
.
be tested offline A s e e mw DS s

>
j ! ] H
model = load_model(model_name='Carmon2019Unlabeled’, 3 60% H
v v 3 60% . H
dataset="cifar10’, g e :
threat_model='Linf") e B S5 4 e & °* 3§
@ 50% . 1
3 .
" b odel ] . o &
from robustbench.eval import benchmark < a0% 1 ] ¢ .
clean_acc, robust_acc = benchmark(model, g . .
dataset='cifar10’, £ o1
threat_model='Linf') - i ¥
3 9/
X 20% ~

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec Croce ef al., RobustBench: ..., NeurlPS '21 Datasets and Benchmarks Track 71
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Current Benchmark for Vision Models: RobustBench

Pros

First standardized
benchmark

Easy to use
(AutoAttack
provides a good
combination of
attacks)

Cons

Evalutes RA at fixed
perturbation budget
Computationally
demanding
(ensembling four
attacks)

RoBusTBENCH

Available Leaderboards

Show 15

® 5 0w

Leaderboards

Paper FAQ

Leaderboard: CIFAR-10, £,, = 8/255, untargeted attack

¥ entries

Method

Fixing Data Augmentation to Improve Adversarial
Robustness
66.56% robust accuracy is due to the original evaluation (AutoAttack +

MultiTargeted)

Improving Robustness using Generated Data

It uses additional 100M synthetic images in training. 66.10% robust accuracy is

due to the original evaluation (AutoAttack + MultiTargeted)

Uncovering the Limits of Adversarial Training against
Norm-Bounded Adversarial Examples
65.87% robust accuracy is due to the original evaluation (AutoAttack +

MultiTargeted)

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec

Standar
da
accurac

Y

92.23%

88.74%

91.10%

AutoAttack

robust

accuracy

66.58%

66.11%

65.88%

Best known AR eval.
robust potentially
accuracy unreliable
66.56% X
66.10% X
65.87% X

Contribute

Ex
tr

da
ta

Search:

Architectur
e

WideResNet-70-

16

WideResNet-70-

16

WideResNet-70-

16

Model Zoo %/

Venue

arXiv, Mar
2021

NeurlPS
2021

arXiv, Oct
2020

Croce et al., RobustBench: ..., NeurlPS '21 Datasets and Benchmarks Track
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Uncovering the Limits of Adversarial Training against
Norm-Bounded Adversarial Examples

« Sven Gowal (Deepmind) et al., 2021
https://arxiv.org/ats/2010.03593

60% -
We discover that it is possible to train
robust models that go well beyond 50% 1
state-of-the-art results by combining
larger models, Swish/SiLU activations 205, |

and model weight averaging.

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec

Ours (65.88%)

Carmon et al. (59.53%)
(Unlabeled data)
Ours (57.20%)

Madry et al. (44.04%)

Zhang et al. (5 08‘%
TRADE
®_Rice et aI (53.42%)
o :
- (Early stopping)

e without additional data ® e

with additional data

2018

2019 2020

Extracted from RobusiBench:
https://robustbench.github.io/
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Attack Implementations

* Most popular Python libraries implementing attacks
— we will use secml in this course

=. - Adversarial
] | SEC@ })« | Robustness
Toolbox

Foolbox

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec
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Physical Attacks: EoT and Adversarial Patches




Adversarial Examples in the Physical World

« Do adversarial images fool deep networks even when they operate in the physical
world, for example, images are taken from a cell-phone camera?

— Alexey Kurakin et al. (2016, 2017) explored the possibility of creating adversarial images for
machine learning systems which operate in the physical world. They used images taken from a
cell-phone camera as an input to an Inception v3 image classification neural network

— They showed that in such a set-up, a significant fraction of adversarial images crafted using
the original network are misclassified even when fed to the classifier through the camera

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec Alexey Kurakin et al., ICLR 2017
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Adversarial Examples in the Physical World

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec

g ¥

B

r S 4 .
AL
. %

o A Y

Athalye et al., Synthesizing robust adversarial examples. ICML, 2018
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Adversarial Examples in the Physical World

Robust Physical-World Attacks
on Machine Learning Models

Visit https://iotsecurity.eecs.umich.edu/#roadsigns for an FAQ

Ivan Evtimov!, Kevin Eykholt?, Earlence Fernandes!, Tadayoshi Kohno!,
Bo Li%, Atul Prakash?, Amir Rahmati3, and Dawn Song**

University of Washington
2University of Michigan Ann Arbor
3Stony Brook University
4University of California, Berkeley

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec
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How Are They Optimized?

« The constraint for the attacker here is to craft a perturbation which is robust to changes
in illumination, pose, distance to the camera, etc.

— How is this achieved?

» The previous examples all make use of the notion of EoT: Expectation over

Transformations, originally proposed by Athalye et al., ICML 2018
https://arxiv.org/pdf/1707.07397 .odf

— Main idea: to optimize the perturbation to be invariant to different image transformations

arg max E¢~rllog P(y:|t(z"))]

subjectto Eiur[d(t(z), t(z))] < €
z € [0,1]¢

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec Athalye et al., Synthesizing robust adversarial examples. ICML, 2018 79
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Adversarial Patch

Image input VGG-16 output

place sticker on table

banana padlock  chain_mail eel hatchet

aster  banana  buckle purse  pencil_sha

Figure 1: A real-world attack on VGG16, using a physical patch generated by the white-box ensemble
method described in Section 3. When a photo of a tabletop with a banana and a notebook (top
photograph) is passed through VGG16, the network reports class *banana’ with 97% confidence (top
plot). If we physically place a sticker targeted to the class "toaster" on the table (bottom photograph),
the photograph is classified as a toaster with 99% confidence (bottom plot). See the following video
for a full demonstration: https://youtu.be/e9IAu41TIw8

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec Brown et al., Adversarial Patch, NIPSW 2017
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ImageNet Patch

soap dispenser

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec

limse otter Lakeland terrier

N S

in orn

M. Pintor et al., ImageNet-Patch: A Dataseft for ..., Patt. Rec. 2022



Universal Adversarial Perturbations (UAP)

« Same principle of EoT: optimizing the perturbation
over different images

— However, this attack just considers images from different
classes (and not different views of the same object)

Al B

(a) CaffeNet (b) VGG-F (c) VGG-16
<4,

(d) VGG-19 (e) GoogLeNet (f) ResNet-152

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec
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S. Moosavi-Dezfooli et al., https://arxiv.org/abs/1610.08401
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Black-box (Gradient-free) Evasion Attacks




Motivations

Model might be non-differentiable (e.g.
Random Forest classifiers)

Target is unavailable, like *“Machine
Learning as a Service” (MLaas), available
only through APIs

No gradients can be computed in these
scenarios, Black-box attacks are needed!

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec

V.L(x,v,0)
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(1) Black-box Transfer Attacks

Attack surrogate classifier

Consider a close approximation of the real

target model, by either training a new one

on same or similar data, or use a pretrained
model

Compute gradient attacks

The attacker chose a differentiable model,
to maximize the easiness of computing
aftacks

Transfer the results

Try to evade the real target using the
adversarial examples computed on the
surrogate

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec

surrogate model

\

is the attack effective?
target model
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Surrogate models

Competition between models
Training different surrogates and compute how
they transfer "all vs all”

Different techniques have different results

The heatmap shows that different models behave
differently when tested with attacks optimized on
other models

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec Papernot et al., Practical Black-box Attacks against Machine Learning, AsiaCCS 2017
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Do Transfer AtHacks Work?

@ initial / source example
© minimum-distance black-box adversarial example

A\ minimum-distance white-box adversarial example

@ maximum-confidence black-box adversarial example

A maximum-confidence white-box adversarial example

surrogate classifier f(x) used to craft black-box adversarial examples

target classifier f (x) used to craft white-box adversarial examples

Maximum confidence attacks might better transfer, but more perturbation is needed

Minimum distance attacks are likely to stop working because decision boundary is different

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec Demontis, Biggio et al., Why Do Adversarial Attacks Transfer? ..., USENIX 2019
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Quantifying Transferability through Metrics

P: 0.91, p-val: < 1e-10
K: 0.72, p-val: < 1e-10
1.0 s @ - -
|5va & = 0.8
e |ogistic o -
(0.8 - "= ridge 2 ?
a T = s SVM-RBF T 06+ ®
— ~ I =
T =£L(y,x+0,w) = L(y,x,W)+0 Vxl(y,X,W) S| —— 5 »
0 A @
5 5 Le
3 3 041 ® ...
% 0.4 £ o J°
3 ’ : o o
2 02 .'
021 XX = %
X 2
10! 0‘2 OI4 OTG OTS
Size of input gradients (S) Gradient alignment (R)

Main Insight: by looking at the size of gradients, the gradient alignment, and the variability
of the loss function, it is possible to understand if a model will suffer from transfer attacks

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec Demontis, Biggio et al., Why Do Adversarial Attacks Transfer? ..., USENIX 2019



Recap

Benefits

No white-box access to target model
Depending on the domain, data and

similar pretrained model are already
available

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec

Issue: to build a good surrogate model

Training the surrogate might lead to training
errors, and the attack might not transfer since
the approximation is not good enough

Data might be unavailable as well
Might require the attacker to interact with the

target to extract labels (to be used at training
time)
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(2) Black-box Query Attacks

No need for training a model from scratch

The attacker can query the target (that might
be on a remote server), no need for looking
for data, pretrained models, etc.

Optimize altack based on feedback
The attack is optimized based on the
classifier’'s output/prediction

- Hard-label vs soft-label attacks

Main challenge: keeping a small number of
queries to stay undetected

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec

©

ST

Sample is
@ malicious?

Fine-tuning
Optimize
manipulation
parameters

®

Answer

Score
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20OO0: Zeroth order attack

No surrogate model

Estimate Hessian (2° order derivative) in
each direction, by querying the model
locally and around a very small proximity
by chosing random directions, no need to
train surrogate

Sparse result

Attack only uses randomly picked
directions to minimize both queries and
perturbation size

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec

[Chen et al., ZOO: Zeroth Order Optimization Based Black-box Attacks to
Deep Neural Networks without Training Substitute Models, AlSec 2017]
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Natural Evolutionary Strategies (NES)

- Assume Normally-distributed inputs

- Estimate gradient w.r.t. distribution parameters
(mean, std)

16) =Elf(@) = [ fa) m

1 A

Vol (6 X; zi) Volog m(z | 6).

- Use the natural gradient instead of the plain gradient
- Fis the Fisher information matrix

- Less dependent on the distribution choice (more
robust/trustworthy direction)

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec

VoJ = F1VyJ(6)

Wiestra et al. Natural evolution strategies, JMLR 2014
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Natural Evolutionary Strategies (NES)

Tested also against MLaas$ =

Dog

Effective in real case scenarios, attacking

Dog Like Mamma

Google Cloud Vision

Snow

Arctic

Winter

Ice

Fun
Freezing

Glacial | andform

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/misec llyas et al. Black-box Adversarial Attacks with Limited Queries

..., ICML 2018

93



Genetic Algorithms

Evolving solutions

Sample N points, compute scores, retain best
candidates. Follow “genetic evolution” until a
suitable solution is found

No gradient estimation

No need for computing approximation of best
direction, it is taken care of by the mixing of
“genes”

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec

p
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Recap

Benefits

Bounded number of queries might already
be enough for evasion

Ready to target real world targets as
MLaasS

A lot of different methods to estimate
directions

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec

Issues

Decision are local, slower than normal
gradient-based attack as it is reconstructing
best direction from answers

The number of needed queries might still be
enormous, depending on the robustness of the
target

95



Countering Evasion Attacks

:; [

What is the rule? The rule is protect yourself at all times
(from the movie “Million dollar baby”, 2004)

. ¥ .p
- a: >
DD
. SO

MiLLION DOLLAR’
BABY




Security Measures for Machine Learning

/ Reactive Defenses 4\

1. timely detection of attacks
2. frequent retraining
3. decision verification

N /

B. Biggio, F. Roli/Pattern Recognition 84 (2018) 317-331

Proactive Defenses
Security-by-Design Defenses

against white-box attacks (no probing)

1. secure/robust learning
2. attack detection

Effect on decision boundaries:
noise-specific margin,

Kenc/osure of legitimate training classes

Security-by-Obscurity Defenses

against gray-box and black-box attacks (probing)

1. information hiding, randomization
2. detection of probing attacks

/

Fig. 11. Schematic categorization of the defense techniques discussed in Section 5.

Wild patterns: Ten years after the rise of adversarial machine learning

Battista Biggio®"*, Fabio Roli®?

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec
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A Challenging Problem!

« https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.niml
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Year

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec
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Security Measures against Evasion Attacks

1. Reduce sensitivity to input changes min 3;; ”%nﬁ\gf i fw(xi + 87))
with robust optimization N
— Adbversarial Training / Regularization bounded perturbation!

SVM-RBF (no reject) SVM-RBF (higher rejection rate)
T T T T T T

2. Infroduce rejection / detection
of adversarial examples

g
=

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec



Countering Evasion:
Robust Optimization / Adversarial Training




Robust Optimization via Adversarial Training (AT)

* Robust optimization (a.k.a. adversarial training)

min max Y;€(v;, fi (x; + 8))

w  [|8illos€

4 )
bounded perturbation! y

* Madry et al., ICLR 2018 (https://arxiv.org/pdf/1706.06083.pdf)
— PGD-AT better than FGSM-AT but more computationally costly '
— Fast AT (NeurlPS 2020, https://arxiv.org/abs/2007.02617)

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec 101
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Robust Optimization via Regularization

* Robust optimization (a.k.a. adversarial training)

min max Y;€(v;, fi (x; + 8))

w  [|8illos€

f

bounded perturbation!

* Robustness and regularization (Xu et al., JMLR 2009)
— under linearity of £ and f,,,, equivalent to robust optimization

m“i/n Yit (i fw(x:)) + €l|Vef 4

T

dual norm of the perturbation
Veflle = [Iwll1

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec
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Results on Adversarial Android Malware

 Infinity-norm regularization is the optimal regularizer against sparse evasion attacks
— Sparse evasion attacks penalize ||8]|; promoting the manipulation of only few features

Sec-SVM ernanWHw + szax(O,l — yl.f(xl.)), HWHOO = }Pffl‘wi
l

Experiments on Android Malware
: :

: N "~ -- ,. o—e SVM Why? It bounds the maximum weight absolute values!
80 AN 3"'\& """" .| =—a MCS-SVM
60l 1 . | &4 Sec-SVM 4

1 o—o Sec-SVM (M)

a0l

200\ N

; By >
50 100 200 Absolute weight values |w| in descending order

1 5 15
Number of modified features

ML Security, 2022 - B. Biggio — https://unica-mlisec.github.io/misec [Demontis, Biggio et al., Yes, ML Can Be More Secure!..., IEEE TDSC 2017]
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Adversarial Training and Regularization

« Adversarial fraining can also be seen as a form of regularization, which penalizes the
(dual) norm of the input gradients el|Vy?||q

+  Known as double backprop or gradient/Jacobian regularization

- see, e.g., Simon-Gabriel et al., Adversarial vulnerability of neural networks increases with input
dimension, ArXiv 2018; and Lyu et al., A unified gradient regularization family for adversarial
examples, ICDM 2015.

g(x)

Take-home message: the net
effect of these techniques is

to make the prediction function =
of the classifier smoother " \ h
(increasing the input margin) x> x

v

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec

104



CIFAR-10

Why Does Robust Optimization Work?

( N/ )
Undefended model — Adversarial accuracy: 0.3% Defended model — Adversarial accuracy: 44.7%

10 10 CZ — 10 10

) o @ ) o @“,‘ i o ‘ ) o

T e =l e z .

3 7 //l;
< rie ;gg?;_;;fﬁ(zfu =
random perturbation adv. perturbation random perturbation adv. perturbation
\_ VAN J

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/misec Yu et al., Interpreting and Evaluating NN Robustness, IJCAI 2019 105



On Adversarial Training...
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Universitit Potsdam

Michael Briickner

Prediction Games

Machine Learning in the Presence of an Adversary
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Countering Evasion:
Detecting & Rejecting Adversarial Examples




Detecting and Rejecting Adversarial Examples

« Adversarial examples tend to occur in blind spots
— Regions far from training data that are anyway assigned to ‘legitimate’ classes

blind-spot evasion
(not even required to
mimic the target class)

rejection of adversarial examples through
enclosing of legitimate classes

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec
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Detecting & Rejecting Adversarial Examples

0.0 - plate3 233.17 - cup3

iCubWorld28
100 100 10 T T T T
: : -0 SVM
= = 0.8 NG ©-@ SVM-RBF [
200 200 - : Bl SVM-adv
O 0.6H @ -+ M- e
o
O
O 04 B
©
o2 - @
0.

0
0 100 200 300 400 500
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ML Security, 2022 - B. Biggio - https://unica-misec.github.io/mlisec [Melis, Biggio et al., Is Deep Learning Safe for Robot Vision? ICCVW ViPAR 2017] 109



Why Rejection (in Representation Space) Is Not Enough?

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec S. Sabour at al., ICLR 2016 110



Deep Neural Rejection against Adversarial Examples

 [—— o ¢ ¥ E— o ,
I q |_||_| |_||—| classifier with reject option, whose

r — decision rule is: argmax(s1,...,S¢,Sg)
T A !
) : e | . ‘: '

- Threshold for detection of anomalous
: inputs, including adversarial examples

: Ko}
P > g2 > -%
il :
N S1 ...  ScSo
Lal b : ‘ﬁ—}
e Predicted outputs on known classes
R —‘;—J L
& > g;
5 .
t '_ _ these classifiers try to predict the correct class
input image from each given representation layer

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec Sotgiu, Biggio et al., EURASIP JIS, 2020 111



DNR against Physical Attacks

DNR Attack with EOT

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec

Frontal
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Robust Learning with Domain Knowledge
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Certified Defenses




Formal Verification via Abstract Interpretation

Interval Bound Propagation (IBP)

Al2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation, IEEE S&P 2018
Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, Martin Vechev

A shape that abstracts all
possible perturbations

All possible Convolutional
perturbations layer

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec

A shape that abstracts
all possible outputs

‘I_.

Fully-connected
layer

to classify to label 8

Check if all outputs [4Q
classify to label 8

to classify to label 8

http://safeqi.ethz.ch 115
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Randomized Smoothing

« Formal guarantee on adversarial robustness (a.k.a. provable robustness)
— classification is consistent within 12 perturbations of size less than a given radius

g(z) = argmax P(f(z+¢) =¢) €))
cey

where ¢ ~ N(0,0°I)

Theorem 1. Let f : RY — Y be any deterministic or
random function, and let € ~ N (0,0%I). Let g be defined
as in (1). Suppose ca € Y and pa,pp € [0, 1] satisfy:

P(f(x +€) =ca) >pa >PB > gléglp(f(ﬂe) =0

Then g(z + 0) = ca forall ||6||2 < R, where

R=5(® ' (pa) - @' (75)) )

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec Cohen et al., ICML 2019 https://arxiv.org/abs/1902.02918
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Certlified Defenses against Patch Attacks

F Ll _‘ L
& . Mask set: Prediction label space:
First-round maskin Prediction  |4°8

2 |
e sereenent Ouputsgre
, . |dog|| dog"dogl = prediction (dog) h_ | m | _J
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One-masked image

Ad.versarial . Majority prediction: cat . .. .H. disagreer (fox)
lmage One-masked image Disagreer prediction: dog, fox

Two-masked image Two-mask prediction

Figure 1: Overview of double-masking defense. The defense applies masks to the input image and evaluates model prediction
on every masked image. Clean image: all one-mask predictions typically agree on the correct label (“dog"); our defense outputs
the agreed prediction. Adversarial image: one-mask predictions have a disagreement; we aim to recover the benign prediction.
We first categorize all one-mask predictions into the majority prediction (the one with the highest prediction label occurrence; the
label “cat" in this example) and disagreer predictions (the ones that disagree with the majority; the labels “dog" and “fox"). For
every mask that leads to a disagreer prediction, we add a set of second masks and evaluate two-mask predictions. If all two-mask
predictions agree with this one-mask disagreer, we output its prediction label (the label “dog"; illustrated in the upper row of the
second-round masking); otherwise, we discard it (the label “fox"; in the lower row of the second-round masking).

ML Security, 2022 — B. Biggio — https://unica-misec.github.io/mlisec Xiang et al., PatchCleanser: ...

, USENIX Sec. 2022



Certified Defenses against Patch Attacks

« PatchCleanser (PC) can certify classification up to a given patch size and for a fraction
of the input samples

— Robust accuracy here is certified. It means that no attack can decrease it further, but also that
empirical attacks may perform worse...

* i.e., agradient-based afttack may actually turn out to find a higher robustness!

Table 2: Clean accuracy and certified robust accuracy for different defenses and datasets’
Dataset | ImageNette [15] | ImageNet [12] | CIFAR-10 [25]

Patch size 1% pixels 2% pixels 3% pixels 1% pixels 2% pixels 3% pixels 0.4% pixels 2.4% pixels
P P P P P p P P

Accuracy (%) | clean | robust | clean | robust | clean | robust | clean | robust | clean | robust | clean | robust | clean | robust | clean | robust

PC-ResNet 99.6 96.4 99.6 94.4 99.5 93.5 81.7 58.4 81.6 53.0 81.4 50.0 98.0 88.5 97.8 78.8

PC-ViT 99.6 97.5 99.6 96.4 99.5 95.3 84.1 66.4 83.9 62.1 83.8 59.0 99.0 94.3 98.7 89.1
PC-MLP 99.4 96.8 99.3 95.3 99.4 94.6 79.6 58.4 79.4 53.8 79.3 50.7 97.4 86.1 97.0 78.0

IBP [7] computationally infeasible 65.8 519 47.8 30.8
CBN [67] 94.9 74.6 94.9 60.9 94.9 459 49.5 134 49.5 7.1 49.5 3.1 84.2 442 84.2 9.3

DS [27] 92.1 823 92.1 79.1 92.1 75.7 444 17.7 44.4 14.0 44.4 11.2 83.9 68.9 83.9 56.2

PG-BN [61] 95.2 89.0 95.0 86.7 94.8 83.0 55.1 32.3 54.6 26.0 54.1 19.7 84.5 63.8 83.9 473
PG-DS [61] 92.3 83.1 92.1 79.9 92.1 76.8 44.1 19.7 43.6 15.7 43.0 12.5 84.7 69.2 84.6 57T
BagCert[35] - - - - - - 453 27.8 45.3 22.7 45.3 18.0 86.0 729 86.0 60.0

T We mark the best result for PatchCleanser models and the best result for prior works in bold.
 The BagCert numbers are provided by the authors [35] through personal communication since the source code is unavailable; results for ImageNette are not provided.

ML Security, 2022 - B. Biggio — https://unica-misec.github.io/mlsec Xiang et al., PatchCleanser: ... , USENIX Sec. 2022
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Shall We Trust Empirical Evaluations?




Ineffective Defenses: Obfuscated Gradients

« Carlini & Wagner (SP’ 17), Athalye et al. (ICML *18), Tramer et al. (NeurlPS ‘20) have

shown that

— some recently-proposed defenses rely on obfuscated / masked gradients...

— ...and they can be circumvented

Obfuscated
gradients do not
allow the
correct
execution of
gradient-based
attacks...

g
4

v

g(x)
A

... but substitute
models and/or
smoothing can
correctly reveal
meaningful
input gradients!

»

X—» X

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec
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Backward Pass Differentiable Approximation (BPDA)

« If gradients of a DNN are “unavailable” at some representation level g(x), e.g. when
inputs are discretized or non-differentiable transformations are applied, one can
approximate g(x) in the backward pass with a smoother function which approximates it

— e.g. Distillation, Thermometer Encoding, JPEG compression

« Trivial case: just replace the gradient of g(x) with ones during the backward pass

ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec Athalye et al., Obfuscated gradients give a false sense of security: .... ICML 2018 121



Detecting Unrealiable Evaluations




Detect and Avoid Flawed Evaluations

*  Problem: formal evaluations &
do not scale, adversarial N oS
@
robustness evaluated & & S & 9
s : ° /e@ N 6 ~o°°\ @\\) o &
mostly empirically, via S & S5 NP PN
; > D F S M D 0 e
radient-based attacks PSS PSP P T
S 9 5 & & & > 06 A \Wd‘q' ¥ ﬁ&
B é\éz ‘\"oz éb 5 & % & o%é o Q‘}N\@o Jboe&o@
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« Gradient-based attacks -O0—0—0 -3 % —% ——80—0—0— $7%
. W
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algorithms & S
9 Qﬁ& “’g\y O Proposed defenses

# Broken defenses
@ Guidelines paper
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Detect and Avoid Flawed Evaluations

« This work identifies the main causes of failure, devises quantitative indicators for them,
and the corresponding mitigation strategies

— The process can be automated by following a specific evaluation protocol!
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Experiments

Robust Accuracy
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Issues with Existing Libraries / Tools (2022)

+ Flawed attack implementations
— Cleverhans (PyTorch, Tensorflow, JAX),
— ART (NumPy, PyTorch, and Tensorflow),
— Foolbox (EagerPy, which wraps the implementation of NumPy, PyTorch, Tensorflow, and JAX)

— Torchattacks (PyTorch)

Library Version  GitHub Y¥
Cleverhans 4.0.0 5.6k
ART 1.11.0 3.1k
Foolbox 333 2.3k
Torchattacks 3.2.6 984

* RobustBench/AutoAttack has a flag to detect unreliable evaluations
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Are Indistinguishable Perturbations a Real Security
Threat?
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Is This a Real Security Threat?

« Adversarial examples can exist in the physical world, we can fabricate concrete
adversarial objects (glasses, road signs, etc.)

« But the effectiveness of attacks carried out by adversarial objects is still to be
investigated with large-scale experiments in realistic security scenarios

« Gilmer et al. (2018) have recently discussed the realism of security threat caused by
adversarial examples, pointing out that it should be carefully investigated

— Are indistinguishable adversarial examples a real security threat?

— For which real security scenarios adversarial examples are the best attack
vectore Better than attacking components outside the machine learning
component

Justin Gilmer et al., Motivating the Rules of the Game for Adversarial Example
Research, https://arxiv.org/abs/1807.06732
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Indistinguishable Adversarial Examples

* Minimize |||/ subject to: The adversarial image x + r is visually
hard to distinguish from x
L flz+r)=1 f) =l c
2. x+re|0,1]™

... There is a torrent of work that views increased robustness to restricted
perturbations as making these models more secure. While not all of this work
requires completely indistinguishable modications, many of the papers focus on
specifically small modications, and the language in many suggests or implies that

the degree of perceptibility of the perturbations is an important aspect of their
security risk...

Justin Gilmer et al., Motivating the Rules of the Game for Adversarial Example
ML Security, 2022 - B. Biggio — htfps://unica-misec.github.io/misec Research, hifps://ariv.org/abs/1807.06732
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Indistinguishable Adversarial Examples

« The attacker can benefit by minimal perturbation of a legitimate input; e.g., she
could use the attack for a longer period of time before it is detected

* But is minimal perturbation a necessary constraint for the attacker?
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Indistinguishable Adversarial Examples

 Is minimal perturbation a necessary constraint for the attacker?
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Attacks with Content Preservation

There are well known security applications where minimal perturbations and
indistinguishability of adversarial inputs are not required at all...
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Are Indistinguishable Perturbations a Real Security Threat?

...At the time of writing, we were unable to find a compelling example
that required indistinguishability ...

To have the largest impact, we should both recast future adversarial
example research as a contribution to core machine learning and
develop new abstractions that capture realistic threat models.

Justin Gilmer et al., Motivating the Rules of the Game for Adversarial Example
Research, https://arxiv.org/abs/1807.06732
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Thanks!

If you know the enemy and know yourself, you need not fear
the result of a hundred battles
Sun Tzu, The art of war, 500 BC

Battista Biggio

battista.biggio@unica.it
, @biggiobattista
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